Keras – 用于文本分析的自编码器

所以我正在尝试创建一个自编码器,它可以处理文本评论并找到一个低维度的表示。我使用的是Keras,并且希望我的损失函数能够将自编码器的输出与嵌入层的输出进行比较。不幸的是,它给我带来了以下错误。我相当确定问题出在我的损失函数上,但我似乎无法解决这个问题。

自编码器

print X_train.shapeinput_i = Input(shape=(200,))embedding = Embedding(input_dim=weights.shape[0],output_dim=weights.shape[1],                      weights=[weights])(input_i)encoded_h1 = Dense(64, activation='tanh')(embedding)encoded_h2 = Dense(32, activation='tanh')(encoded_h1)encoded_h3 = Dense(16, activation='tanh')(encoded_h2)encoded_h4 = Dense(8, activation='tanh')(encoded_h3)encoded_h5 = Dense(4, activation='tanh')(encoded_h4)latent = Dense(2, activation='tanh')(encoded_h5)decoder_h1 = Dense(4, activation='tanh')(latent)decoder_h2 = Dense(8, activation='tanh')(decoder_h1)decoder_h3 = Dense(16, activation='tanh')(decoder_h2)decoder_h4 = Dense(32, activation='tanh')(decoder_h3)decoder_h5 = Dense(64, activation='tanh')(decoder_h4)output = Dense(weights.shape[1], activation='tanh')(decoder_h5)autoencoder = Model(input_i,output)encoder = Model(input_i,latent)print autoencoder.summary()import keras.backend as Kimport tensorflow as tfdef embedded_mse(x_true, e_pred):    print output    print embedding    mse = K.mean(K.square(output - embedding))    print mse    return tf.Session().run(mse)autoencoder.compile(optimizer='adadelta',                    loss=embedded_mse)autoencoder.fit(X_train,X_train,epochs=10,                batch_size=256, validation_split=.1)

输出

(100000, 200)_________________________________________________________________Layer (type)                 Output Shape              Param #   =================================================================input_47 (InputLayer)        (None, 200)               0         _________________________________________________________________embedding_31 (Embedding)     (None, 200, 100)          21833700  _________________________________________________________________dense_528 (Dense)            (None, 200, 64)           6464      _________________________________________________________________dense_529 (Dense)            (None, 200, 32)           2080      _________________________________________________________________dense_530 (Dense)            (None, 200, 16)           528       _________________________________________________________________dense_531 (Dense)            (None, 200, 8)            136       _________________________________________________________________dense_532 (Dense)            (None, 200, 4)            36        _________________________________________________________________dense_533 (Dense)            (None, 200, 2)            10        _________________________________________________________________dense_534 (Dense)            (None, 200, 4)            12        _________________________________________________________________dense_535 (Dense)            (None, 200, 8)            40        _________________________________________________________________dense_536 (Dense)            (None, 200, 16)           144       _________________________________________________________________dense_537 (Dense)            (None, 200, 32)           544       _________________________________________________________________dense_538 (Dense)            (None, 200, 64)           2112      _________________________________________________________________dense_539 (Dense)            (None, 200, 100)          6500      =================================================================Total params: 21,852,306Trainable params: 21,852,306Non-trainable params: 0_________________________________________________________________NoneTensor("dense_539/Tanh:0", shape=(?, 200, 100), dtype=float32)Tensor("embedding_31/Gather:0", shape=(?, 200, 100), dtype=float32)Tensor("loss_48/dense_539_loss/Mean:0", shape=(), dtype=float32)

错误

---------------------------------------------------------------------------InvalidArgumentError                      Traceback (most recent call last)<ipython-input-155-a18e0c32f59b> in <module>()      1 autoencoder.compile(optimizer='adadelta',----> 2                     loss=embedded_mse)      3 autoencoder.fit(X_train,embedding,epochs=10,      4                 batch_size=256, validation_split=.1)/home/andrew/.local/lib/python2.7/site-packages/keras/engine/training.pyc in compile(self, optimizer, loss, metrics, loss_weights, sample_weight_mode, weighted_metrics, target_tensors, **kwargs)    848                 with K.name_scope(self.output_names[i] + '_loss'):    849                     output_loss = weighted_loss(y_true, y_pred,--> 850                                                 sample_weight, mask)    851                 if len(self.outputs) > 1:    852                     self.metrics_tensors.append(output_loss)/home/andrew/.local/lib/python2.7/site-packages/keras/engine/training.pyc in weighted(y_true, y_pred, weights, mask)    448         """    449         # score_array has ndim >= 2--> 450         score_array = fn(y_true, y_pred)    451         if mask is not None:    452             # Cast the mask to floatX to avoid float64 upcasting in theano<ipython-input-153-73211fc383a5> in embedded_mse(x_true, e_pred)      7     print mse      8 ----> 9     return tf.Session().run(mse)/home/andrew/.local/lib/python2.7/site-packages/tensorflow/python/client/session.pyc in run(self, fetches, feed_dict, options, run_metadata)    893     try:    894       result = self._run(None, fetches, feed_dict, options_ptr,--> 895                          run_metadata_ptr)    896       if run_metadata:    897         proto_data = tf_session.TF_GetBuffer(run_metadata_ptr)/home/andrew/.local/lib/python2.7/site-packages/tensorflow/python/client/session.pyc in _run(self, handle, fetches, feed_dict, options, run_metadata)   1122     if final_fetches or final_targets or (handle and feed_dict_tensor):   1123       results = self._do_run(handle, final_targets, final_fetches,-> 1124                              feed_dict_tensor, options, run_metadata)   1125     else:   1126       results = []/home/andrew/.local/lib/python2.7/site-packages/tensorflow/python/client/session.pyc in _do_run(self, handle, target_list, fetch_list, feed_dict, options, run_metadata)   1319     if handle is None:   1320       return self._do_call(_run_fn, self._session, feeds, fetches, targets,-> 1321                            options, run_metadata)   1322     else:   1323       return self._do_call(_prun_fn, self._session, handle, feeds, fetches)/home/andrew/.local/lib/python2.7/site-packages/tensorflow/python/client/session.pyc in _do_call(self, fn, *args)   1338         except KeyError:   1339           pass-> 1340       raise type(e)(node_def, op, message)   1341    1342   def _extend_graph(self):InvalidArgumentError: You must feed a value for placeholder tensor 'input_47' with dtype float and shape [?,200]     [[Node: input_47 = Placeholder[dtype=DT_FLOAT, shape=[?,200], _device="/job:localhost/replica:0/task:0/cpu:0"]()]]Caused by op u'input_47', defined at:  File "/usr/lib/python2.7/runpy.py", line 174, in _run_module_as_main    "__main__", fname, loader, pkg_name)  File "/usr/lib/python2.7/runpy.py", line 72, in _run_code    exec code in run_globals  File "/home/andrew/.local/lib/python2.7/site-packages/ipykernel_launcher.py", line 16, in <module>    app.launch_new_instance()  File "/home/andrew/.local/lib/python2.7/site-packages/traitlets/config/application.py", line 658, in launch_instance    app.start()  File "/home/andrew/.local/lib/python2.7/site-packages/ipykernel/kernelapp.py", line 477, in start    ioloop.IOLoop.instance().start()  File "/home/andrew/.local/lib/python2.7/site-packages/zmq/eventloop/ioloop.py", line 177, in start    super(ZMQIOLoop, self).start()  File "/home/andrew/.local/lib/python2.7/site-packages/tornado/ioloop.py", line 888, in start    handler_func(fd_obj, events)  File "/home/andrew/.local/lib/python2.7/site-packages/tornado/stack_context.py", line 277, in null_wrapper    return fn(*args, **kwargs)  File "/home/andrew/.local/lib/python2.7/site-packages/zmq/eventloop/zmqstream.py", line 440, in _handle_events    self._handle_recv()  File "/home/andrew/.local/lib/python2.7/site-packages/zmq/eventloop/zmqstream.py", line 472, in _handle_recv    self._run_callback(callback, msg)  File "/home/andrew/.local/lib/python2.7/site-packages/zmq/eventloop/zmqstream.py", line 414, in _run_callback    callback(*args, **kwargs)  File "/home/andrew/.local/lib/python2.7/site-packages/tornado/stack_context.py", line 277, in null_wrapper    return fn(*args, **kwargs)  File "/home/andrew/.local/lib/python2.7/site-packages/ipykernel/kernelbase.py", line 283, in dispatcher    return self.dispatch_shell(stream, msg)  File "/home/andrew/.local/lib/python2.7/site-packages/ipykernel/kernelbase.py", line 235, in dispatch_shell    handler(stream, idents, msg)  File "/home/andrew/.local/lib/python2.7/site-packages/ipykernel/kernelbase.py", line 399, in execute_request    user_expressions, allow_stdin)  File "/home/andrew/.local/lib/python2.7/site-packages/ipykernel/ipkernel.py", line 196, in do_execute    res = shell.run_cell(code, store_history=store_history, silent=silent)  File "/home/andrew/.local/lib/python2.7/site-packages/ipykernel/zmqshell.py", line 533, in run_cell    return super(ZMQInteractiveShell, self).run_cell(*args, **kwargs)  File "/home/andrew/.local/lib/python2.7/site-packages/IPython/core/interactiveshell.py", line 2718, in run_cell    interactivity=interactivity, compiler=compiler, result=result)  File "/home/andrew/.local/lib/python2.7/site-packages/IPython/core/interactiveshell.py", line 2822, in run_ast_nodes    if self.run_code(code, result):  File "/home/andrew/.local/lib/python2.7/site-packages/IPython/core/interactiveshell.py", line 2882, in run_code    exec(code_obj, self.user_global_ns, self.user_ns)  File "<ipython-input-152-7732fda181fc>", line 2, in <module>    input_i = Input(shape=(200,))  File "/home/andrew/.local/lib/python2.7/site-packages/keras/engine/topology.py", line 1436, in Input    input_tensor=tensor)  File "/home/andrew/.local/lib/python2.7/site-packages/keras/legacy/interfaces.py", line 87, in wrapper    return func(*args, **kwargs)  File "/home/andrew/.local/lib/python2.7/site-packages/keras/engine/topology.py", line 1347, in __init__    name=self.name)  File "/home/andrew/.local/lib/python2.7/site-packages/keras/backend/tensorflow_backend.py", line 442, in placeholder    x = tf.placeholder(dtype, shape=shape, name=name)  File "/home/andrew/.local/lib/python2.7/site-packages/tensorflow/python/ops/array_ops.py", line 1548, in placeholder    return gen_array_ops._placeholder(dtype=dtype, shape=shape, name=name)  File "/home/andrew/.local/lib/python2.7/site-packages/tensorflow/python/ops/gen_array_ops.py", line 2094, in _placeholder    name=name)  File "/home/andrew/.local/lib/python2.7/site-packages/tensorflow/python/framework/op_def_library.py", line 767, in apply_op    op_def=op_def)  File "/home/andrew/.local/lib/python2.7/site-packages/tensorflow/python/framework/ops.py", line 2630, in create_op    original_op=self._default_original_op, op_def=op_def)  File "/home/andrew/.local/lib/python2.7/site-packages/tensorflow/python/framework/ops.py", line 1204, in __init__    self._traceback = self._graph._extract_stack()  # pylint: disable=protected-accessInvalidArgumentError (see above for traceback): You must feed a value for placeholder tensor 'input_47' with dtype float and shape [?,200]     [[Node: input_47 = Placeholder[dtype=DT_FLOAT, shape=[?,200], _device="/job:localhost/replica:0/task:0/cpu:0"]()]]

回答:

你的问题有一些问题(例如,weights是什么,在Embedding和最后的Dense层参数中使用了它?)。不过,我认为一个更简单的办法是将嵌入和自编码部分分开(它们是独立的),首先构建一个简单的嵌入模型,然后使用它的输出(通过predict)来馈送你的自编码器。这样你就不必定义自定义损失函数(顺便说一下,在这种函数中使用print语句不是一个好主意)。

在不知道你的数据细节的情况下,以下两个模型可以正常编译:

嵌入模型(从文档中快速改编)

model = Sequential()model.add(Embedding(1000, 64))model.compile('rmsprop', 'mse')

自编码器:

input_i = Input(shape=(200,100))encoded_h1 = Dense(64, activation='tanh')(input_i)encoded_h2 = Dense(32, activation='tanh')(encoded_h1)encoded_h3 = Dense(16, activation='tanh')(encoded_h2)encoded_h4 = Dense(8, activation='tanh')(encoded_h3)encoded_h5 = Dense(4, activation='tanh')(encoded_h4)latent = Dense(2, activation='tanh')(encoded_h5)decoder_h1 = Dense(4, activation='tanh')(latent)decoder_h2 = Dense(8, activation='tanh')(decoder_h1)decoder_h3 = Dense(16, activation='tanh')(decoder_h2)decoder_h4 = Dense(32, activation='tanh')(decoder_h3)decoder_h5 = Dense(64, activation='tanh')(decoder_h4)output = Dense(100, activation='tanh')(decoder_h5)autoencoder = Model(input_i,output)autoencoder.compile('adadelta','mse')

在将上述模型参数调整到你的情况后,这应该可以正常工作:

X_embedded = model.predict(X_train)autoencoder.fit(X_embedded,X_embedded,epochs=10,            batch_size=256, validation_split=.1)

Related Posts

L1-L2正则化的不同系数

我想对网络的权重同时应用L1和L2正则化。然而,我找不…

使用scikit-learn的无监督方法将列表分类成不同组别,有没有办法?

我有一系列实例,每个实例都有一份列表,代表它所遵循的不…

f1_score metric in lightgbm

我想使用自定义指标f1_score来训练一个lgb模型…

通过相关系数矩阵进行特征选择

我在测试不同的算法时,如逻辑回归、高斯朴素贝叶斯、随机…

可以将机器学习库用于流式输入和输出吗?

已关闭。此问题需要更加聚焦。目前不接受回答。 想要改进…

在TensorFlow中,queue.dequeue_up_to()方法的用途是什么?

我对这个方法感到非常困惑,特别是当我发现这个令人费解的…

发表回复

您的邮箱地址不会被公开。 必填项已用 * 标注