Keras图像分类预测在图像调整大小时的错误

我有一个训练好的模型,该模型已被训练用于识别不同的文档,我的数据集来自 http://www.cs.cmu.edu/~aharley/rvl-cdip/

以下是我构建模型的方式

import numpy as npfrom keras.preprocessing.image import ImageDataGenerator, array_to_img, img_to_array, load_imgimport picklefrom keras.optimizers import SGDfrom keras.models import Sequential, save_modelfrom keras.layers import Dense, Dropout, Flatten, Activationfrom keras.layers.convolutional import Conv2D, MaxPooling2D# Set image informationchannels = 1height = 1000width = 754model = Sequential()# Add a Conv2D layer with 32 nodes to the modelmodel.add(Conv2D(32, (3, 3), input_shape=(1000, 754, 3)))# Add the reLU activation function to the modelmodel.add(Activation('relu'))model.add(MaxPooling2D(pool_size=(2, 2)))model.add(Conv2D(32, (3, 3)))model.add(Activation('relu'))model.add(MaxPooling2D(pool_size=(2, 2)))model.add(Conv2D(32, (3, 3)))model.add(Activation('relu'))model.add(MaxPooling2D(pool_size=(2, 2)))model.add(Flatten())  # this converts our 3D feature maps to 1D feature vectorsmodel.add(Dense(64))model.add(Activation('relu'))model.add(Dropout(0.5))model.add(Dense(1))model.add(Activation('relu'))model.compile(loss='categorical_crossentropy',  # sparse_categorical_crossentropy              # Adam(lr=.0001) SGD variation with learning rate              optimizer='adam',              metrics=['accuracy'])# Image data generator to import iamges from data folderdatagen = ImageDataGenerator()# Flowing images from folders sorting by labels, and generates batches of imagestrain_it = datagen.flow_from_directory(    "data/train/", batch_size=16, target_size=(height, width), shuffle=True, class_mode='categorical')test_it = datagen.flow_from_directory(    "data/test/", batch_size=16, target_size=(height, width), shuffle=True, class_mode='categorical')val_it = datagen.flow_from_directory(    "data/validate/", batch_size=16, target_size=(height, width), shuffle=True, class_mode='categorical')history = model.fit(    train_it,    epochs=2,    batch_size=16,    validation_data=val_it,    shuffle=True,    steps_per_epoch=2000 // 16,    validation_steps=800 // 16)save_model(model, "./ComplexDocumentModel")model.save("my_model", save_format='h5')

如最后一行所示,我将模型保存为h5格式。

现在我尝试使用该训练好的模型来预测单个图像,以查看它属于哪个类别,下面是脚本。

from keras.models import load_modelimport cv2import numpy as npimport kerasfrom keras.preprocessing import imagemodel = load_model('my_model')# First trydef prepare(file):    img_array = cv2.imread(file, cv2.IMREAD_GRAYSCALE)    new_array = cv2.resize(img_array, (1000, 754))    return new_array.reshape(3, 1000, 754, 1)# Second tryimg = image.load_img(    "/home/user1/Desktop/Office/image-process/test/0000113760.tif")img = image.img_to_array(img)img = np.expand_dims(img, axis=-1)prediction = model.predict(    [prepare("/home/user1/Desktop/Office/image-process/test/0000113760.tif")])print(prediction)

我尝试了两种方式来预测图像,但都出现了错误

    ValueError: Input 0 of layer sequential is incompatible with the layer: expected axis -1 of input shape to have value 3 but received input with shape (None, 762, 3, 1)

我还尝试使用PIL打开图像并转换为NumPy数组,这是我在谷歌上找到的方法。不幸的是,我找到的其他答案、博客或视频教程都没有帮助我。


回答:

您正在尝试将灰度图像输入到一个期望具有3个通道的网络中。您可以将最后一个通道堆叠3次以获得兼容的形状,但预测结果可能会较差:

def prepare(file):    img_array = cv2.imread(file, cv2.IMREAD_GRAYSCALE)    new_array = cv2.resize(img_array, (1000, 754)) # shape is (1000,754)    # converting to RGB    array_color = cv2.cvtColor(new_array, cv2.COLOR_GRAY2RGB) # shape is (1000,754,3)    array_with_batch_dim = np.expand_dims(array_color, axis=0) # shape is (1,1000,754,3)    return array_with_batch_dim

另一种解决方案是不在读取图像时将其转换为灰度,省略标志 cv2.IMREAD_GRAYSCALE。OpenCV的默认行为是加载具有3个通道的图像。

def prepare(file):    img_array = cv2.imread(file)    new_array = cv2.resize(img_array, (1000, 754)) # shape is (1000,754, 3)    # converting to RGB    array_with_batch_dim = np.expand_dims(new_array, axis=0) # shape is (1,1000,754,3)    return array_with_batch_dim

注意: 根据您的预处理,您可能需要在将图像输入网络之前通过除以255将其归一化到0到1之间。

Related Posts

如何对SVC进行超参数调优?

已关闭。此问题需要更加聚焦。目前不接受回答。 想要改进…

如何在初始训练后向模型添加训练数据?

我想在我的scikit-learn模型已经训练完成后再…

使用Google Cloud Function并行运行带有不同用户参数的相同训练作业

我正在寻找一种方法来并行运行带有不同用户参数的相同训练…

加载Keras模型,TypeError: ‘module’ object is not callable

我已经在StackOverflow上搜索并阅读了文档,…

在计算KNN填补方法中特定列中NaN值的”距离平均值”时

当我从头开始实现KNN填补方法来处理缺失数据时,我遇到…

使用巨大的S3 CSV文件或直接从预处理的关系型或NoSQL数据库获取数据的机器学习训练/测试工作

已关闭。此问题需要更多细节或更清晰的说明。目前不接受回…

发表回复

您的邮箱地址不会被公开。 必填项已用 * 标注