这里我有一个用于Keras的GoogleNet模型。是否有任何可能的方法来阻止网络中各个层的变化?我希望阻止预训练模型的前两层的变化。
回答:
当我说“阻止各个层的变化”时,我假设你不希望训练这些层,也就是说,你不希望修改在之前训练中可能已经学到的权重。
如果是这样的话,你可以将trainable=False
传递给层,这样这些参数就不会用于训练更新规则。
示例:
from keras.models import Sequentialfrom keras.layers import Dense, Activationmodel = Sequential([ Dense(32, input_dim=100), Dense(output_dim=10), Activation('sigmoid'),])model.summary()model2 = Sequential([ Dense(32, input_dim=100,trainable=False), Dense(output_dim=10), Activation('sigmoid'),])model2.summary()
你可以在第二个模型的模型摘要中看到,这些参数被计为非可训练参数。
____________________________________________________________________________________________________Layer (type) Output Shape Param # Connected to ====================================================================================================dense_1 (Dense) (None, 32) 3232 dense_input_1[0][0] ____________________________________________________________________________________________________dense_2 (Dense) (None, 10) 330 dense_1[0][0] ____________________________________________________________________________________________________activation_1 (Activation) (None, 10) 0 dense_2[0][0] ====================================================================================================Total params: 3,562Trainable params: 3,562Non-trainable params: 0________________________________________________________________________________________________________________________________________________________________________________________________________Layer (type) Output Shape Param # Connected to ====================================================================================================dense_3 (Dense) (None, 32) 3232 dense_input_2[0][0] ____________________________________________________________________________________________________dense_4 (Dense) (None, 10) 330 dense_3[0][0] ____________________________________________________________________________________________________activation_2 (Activation) (None, 10) 0 dense_4[0][0] ====================================================================================================Total params: 3,562Trainable params: 330Non-trainable params: 3,232