我在尝试使用keras函数式API构建一个多输入多输出的模型,并按照他们的代码进行操作,但遇到了以下错误:
ValueError: Input 0 is incompatible with layer lstm_54: expected ndim=3, found ndim=4
我在创建lstm_out层时遇到了这个错误,以下是代码:
def build_model(self): main_input = Input(shape=(self.seq_len, 1), name='main_input') #seq_len = 50, vocab_len = 1000 x = Embedding(output_dim=512, input_dim=self.vocab_len()+1, input_length=self.seq_len)(main_input) # A LSTM will transform the vector sequence into a single vector, # containing information about the entire sequence lstm_out = LSTM(50)(x) self.auxiliary_output = Dense(1, activation='sigmoid', name='aux_output')(lstm_out) auxiliary_input = Input(shape=(self.seq_len,1), name='aux_input') x = concatenate([lstm_out, auxiliary_input]) # We stack a deep densely-connected network on top x = Dense(64, activation='relu')(x) x = Dense(64, activation='relu')(x) x = Dense(64, activation='relu')(x) # And finally we add the main logistic regression layer main_output = Dense(1, activation='sigmoid', name='main_output')(x) self.model = Model(inputs=[main_input, auxiliary_input], outputs=[main_output, auxiliary_output]) print(self.model.summary()) self.model.compile(optimizer='rmsprop', loss='binary_crossentropy', loss_weights=[1., 0.2])
我原本以为问题出在Embedding层的input_dim上,但我查看了keras Embedding文档,发现(input_dim应该等于词汇量大小 + 1)。
我不知道为什么会出现这个错误,我的input_dim具体哪里出了问题,以及如何解决它?
回答:
Embedding层的输入形状应该是二维张量,形状为:(batch_size, sequence_length)。在你的代码片段中,main_input是一个三维张量。要解决这个问题,请更改以下代码行:
main_input = Input(shape=(self.seq_len, 1), name='main_input')<...>auxiliary_input = Input(shape=(self.seq_len,1), name='aux_input')
为:
main_input = Input(shape=(self.seq_len, ), name='main_input')<...>auxiliary_input = Input(shape=(self.seq_len, ), name='aux_input')
这应该能解决不同维度的问题