这是我的代码:
# data consists of 1 dimensional data (3277 elements). Number of data is 439 train_data = .... # numpy.ndarray# 我希望将数据分类为5个类别.train_labels = .... # numpy.ndarrayprint(train_data.shape) # -> Shape of train_data: (439, 3277)print('Shape of train_labels:', train_labels.shape) # -> Shape of train_labels: (439,)# 准备5个独热编码数组categorical_labels = to_categorical(train_labels, 5)print('Shape of categorical_labels:', categorical_labels.shape) # -> Shape of categorical_labels: (439, 5)# 我创建了一个模型来处理3277元素的数据,并将数据分类为5个标签。model = keras.Sequential([ keras.layers.Dense(30, activation='relu', input_shape=(3277,)), keras.layers.Dense(30, activation='relu'), keras.layers.Dense(5, activation='softmax')])model.summary()model.compile(optimizer='adam', loss='sparse_categorical_crossentropy', metrics=['accuracy'])model.fit(data, categorical_labels, epochs=5, verbose=1) # A#model.fit(data, train_labels, epochs=5, verbose=1) # B
当我尝试使用标记为’A’的行时,我得到了这个错误
ValueError: Error when checking target: expected dense_3 to have shape (1,) but got array with shape (5,)
使用’B’时,它运行正常(没有明显的错误,并且机器返回高分)
显然,错误与形状的差异有关… 当我想使用keras.utils.to_categorical
时,我该如何修改我的代码?
另一个问题是为什么这个案例工作(https://github.com/keras-team/keras/blob/master/examples/mnist_mlp.py),而我的案例不行..
结构看起来对我来说是相似的…
回答:
因为sparse_categorical_crossentropy
不期望标签以独热编码格式出现,你应该使用loss='categorical_crossentropy'
。
简而言之,关于你的案例:
train_labels
=>loss='sparse_categorical_crossentropy'
categorical_labels
=>loss='categorical_crossentropy'