我想预测两种疾病的类型,但得到的结果是二进制的(如1.0和0.0)。如何获得这些结果的准确率(如0.7213)?
训练代码:
from keras.models import Sequentialfrom keras.layers import Conv2Dfrom keras.layers import MaxPooling2Dfrom keras.layers import Flattenfrom keras.layers import Dense# Intialising the CNNclassifier = Sequential()# Step 1 - Convolutionclassifier.add(Conv2D(32, (3, 3), input_shape = (64, 64, 3), activation = 'relu'))# Step 2 - Poolingclassifier.add(MaxPooling2D(pool_size = (2, 2)))# Adding a second convolutional layerclassifier.add(Conv2D(32, (3, 3), activation = 'relu'))classifier.add(MaxPooling2D(pool_size = (2, 2)))# Step 3 - Flatteningclassifier.add(Flatten())# Step 4 - Full connectionclassifier.add(Dense(units = 128, activation = 'relu'))classifier.add(Dense(units = 1, activation = 'sigmoid'))# Compiling the CNNclassifier.compile(optimizer = 'adam', loss = 'binary_crossentropy', metrics = ['accuracy'])# Part 2 - Fitting the CNN to the imagesimport h5pyfrom keras.preprocessing.image import ImageDataGeneratortrain_datagen = ImageDataGenerator(rescale = 1./255, shear_range = 0.2, zoom_range = 0.2, horizontal_flip = True)test_datagen = ImageDataGenerator(rescale = 1./255)training_set = train_datagen.flow_from_directory('training_set', target_size = (64, 64), batch_size = 32, class_mode = 'binary')test_set = test_datagen.flow_from_directory('test_set', target_size = (64, 64), batch_size = 32, class_mode = 'binary')classifier.fit_generator(training_set, steps_per_epoch = 100, epochs = 1, validation_data = test_set, validation_steps = 100)
单个预测代码:
import numpy as npfrom keras.preprocessing.image import ImageDataGenerator, array_to_img, img_to_array, load_img,imagetest_image = image.load_img('path_to_image', target_size = (64, 64))test_image = image.img_to_array(test_image)test_image = np.expand_dims(test_image, axis = 0)result = classifier.predict(test_image)print(result[0][0]) # Prints 1.0 or 0.0# 我想要这个预测的准确率,如0.7213
文件结构如下:
-
test_set
- benigne
- benigne_images
- melignant
- melignant_images
- benigne
-
training set
训练集的结构与测试集相同。
回答:
更新: 正如您在评论中澄清的,您希望获得单个测试样本所属每个类的概率。因此,您可以使用predict
方法。然而,请注意,您必须首先像在训练阶段一样对图像进行预处理:
test_image /= 255.0result = classifier.predict(test_image)
result
将是给定图像属于第一类(即正类)的概率。
如果您有测试数据的生成器,那么您可以使用evaluate_generator()
来获取模型在测试数据上的损失以及准确率(或您设置的任何其他指标)。
例如,在拟合模型之后,即使用fit_generator
后,您可以对测试数据生成器test_set
使用evaluate_generator
:
loss, acc = evaluate_generator(test_set)