我有一个正常工作的网络如下:
output = LSTM(8)(output)output = Dense(2)(output)
现在对于同一模型,我尝试像下面这样堆叠几个LSTM层:
output = LSTM(8)(output, return_sequences=True)output = LSTM(8)(output)output = Dense(2)(output)
但我遇到了以下错误:
TypeError Traceback (most recent call last)<ipython-input-2-0d0ced2c7417> in <module>() 39 40 output = Concatenate(axis=2)([leftOutput,rightOutput])---> 41 output = LSTM(8)(output, return_sequences=True) 42 output = LSTM(8)(output) 43 output = Dense(2)(output)/usr/local/lib/python3.4/dist-packages/keras/layers/recurrent.py in __call__(self, inputs, initial_state, constants, **kwargs) 480 481 if initial_state is None and constants is None:--> 482 return super(RNN, self).__call__(inputs, **kwargs) 483 484 # If any of `initial_state` or `constants` are specified and are Keras/usr/local/lib/python3.4/dist-packages/keras/engine/topology.py in __call__(self, inputs, **kwargs) 601 602 # Actually call the layer, collecting output(s), mask(s), and shape(s).--> 603 output = self.call(inputs, **kwargs) 604 output_mask = self.compute_mask(inputs, previous_mask) 605 TypeError: call() got an unexpected keyword argument 'return_sequences'
这很令人困惑,因为根据Keras文档,return_sequences
是一个有效的参数:https://keras.io/layers/recurrent/#lstm
我在这里做错了什么?谢谢!
回答:
问题在于return_sequences
应该作为参数传递给层构造函数,而不是层调用。将代码更改为:
output = LSTM(8, return_sequences=True)(output)
解决了这个问题。