我在使用Keras时遇到了这个错误。如何解决它?
这是我的代码:
cbow_words = Sequential()cbow_words.add(Embedding(input_dim=V1, output_dim=dim, input_length=window_size*2 ,embeddings_constraint=non_neg()))#modifiécbow_words.add(Lambda(lambda x: K.mean(x, axis=1), output_shape=(dim,)))cbow_words.add(Dense(V1, activation='softmax'))cbow_texts = Sequential()cbow_texts.add(Embedding(input_dim=V2, output_dim=dim, input_length=1,embeddings_constraint=non_neg()))cbow_texts.add(Lambda(lambda x: K.mean(x, axis=1), output_shape=(dim,)))cbow_texts.add(Dense(V2, activation='softmax'))cbow=Concatenate([cbow_words,cbow_texts])cbow.compile(loss=loss, optimizer=optimizers.Adadelta(lr=lr, rho=0.95, epsilon=None, decay=0.0))
我遇到了这个问题:
-------------------------------------------------------------------------AttributeError Traceback (most recent call last)<ipython-input-40-b94a3567fc00> in <module>() 11 cbow=Concatenate([cbow_words,cbow_texts]) 12 ---> 13 cbow.compile(loss=loss, optimizer=optimizers.Adadelta(lr=lr, rho=0.95, epsilon=None, decay=0.0))AttributeError: 'Concatenate' object has no attribute 'compile'
回答:
您将Sequential
模型与功能组件混合使用了。Concatenate
需要张量作为输入,而不是Sequential
模型。
由于您有两个输入,我建议您使用函数式API,在您的案例中,大致结构如下:
from keras.models import Modelfrom keras.layers import Input, Dense, concatenatewords_in = Input((10,))words = Dense(10, activation='softmax')(words_in)texts_in = Input((10,))texts = Dense(10, activation='softmax')(texts_in)concat = concatenate([words, texts])cbow = Model(inputs=[words_in, texts_in], output=concat)cbow.compile(loss="categorical_crossentropy", optimizer="adagrad")