Kaggle泰坦尼克号-从灾难中学习机器学习与TensorFlow:模型训练无法获取损失值

我刚刚开始学习使用TensorFlow进行机器学习,我想通过参加Kaggle上的泰坦尼克号-从灾难中学习机器学习比赛来测试我那还不够成熟的技能。这次比赛的数据可以在这里找到这里

为了简化,我删除了所有字符串值,除了Sex,我将其映射为male1female0

但是在模型训练过程中,所有纪元的损失值都是nan。我不知道为什么会这样,如果有人能告诉我问题出在哪里,那将非常有帮助。

我的当前代码:

输出:

Epoch 1/253/3 [==============================] - 1s 102ms/step - loss: nan - val_loss: nanEpoch 2/253/3 [==============================] - 0s 15ms/step - loss: nan - val_loss: nanEpoch 3/253/3 [==============================] - 0s 14ms/step - loss: nan - val_loss: nanEpoch 4/253/3 [==============================] - 0s 19ms/step - loss: nan - val_loss: nanEpoch 5/253/3 [==============================] - 0s 22ms/step - loss: nan - val_loss: nanEpoch 6/253/3 [==============================] - 0s 22ms/step - loss: nan - val_loss: nanEpoch 7/253/3 [==============================] - 0s 17ms/step - loss: nan - val_loss: nanEpoch 8/253/3 [==============================] - 0s 17ms/step - loss: nan - val_loss: nanEpoch 9/253/3 [==============================] - 0s 17ms/step - loss: nan - val_loss: nanEpoch 10/253/3 [==============================] - 0s 20ms/step - loss: nan - val_loss: nanEpoch 11/253/3 [==============================] - 0s 17ms/step - loss: nan - val_loss: nanEpoch 12/253/3 [==============================] - 0s 19ms/step - loss: nan - val_loss: nanEpoch 13/253/3 [==============================] - 0s 17ms/step - loss: nan - val_loss: nanEpoch 14/253/3 [==============================] - 0s 17ms/step - loss: nan - val_loss: nanEpoch 15/253/3 [==============================] - 0s 18ms/step - loss: nan - val_loss: nanEpoch 16/253/3 [==============================] - 0s 17ms/step - loss: nan - val_loss: nanEpoch 17/253/3 [==============================] - 0s 15ms/step - loss: nan - val_loss: nanEpoch 18/253/3 [==============================] - 0s 18ms/step - loss: nan - val_loss: nanEpoch 19/253/3 [==============================] - 0s 19ms/step - loss: nan - val_loss: nanEpoch 20/253/3 [==============================] - 0s 16ms/step - loss: nan - val_loss: nanEpoch 21/253/3 [==============================] - 0s 19ms/step - loss: nan - val_loss: nanEpoch 22/253/3 [==============================] - 0s 20ms/step - loss: nan - val_loss: nanEpoch 23/253/3 [==============================] - 0s 18ms/step - loss: nan - val_loss: nanEpoch 24/253/3 [==============================] - 0s 13ms/step - loss: nan - val_loss: nanEpoch 25/253/3 [==============================] - 0s 18ms/step - loss: nan - val_loss: nan<tensorflow.python.keras.callbacks.History at 0x18bc9160dc0>

回答:

因为在这个数据集中,Age列有一些空值。这就是为什么你会得到损失值为nan的原因。

你可以删除Age列或清理数据,使其没有空值。

Related Posts

使用LSTM在Python中预测未来值

这段代码可以预测指定股票的当前日期之前的值,但不能预测…

如何在gensim的word2vec模型中查找双词组的相似性

我有一个word2vec模型,假设我使用的是googl…

dask_xgboost.predict 可以工作但无法显示 – 数据必须是一维的

我试图使用 XGBoost 创建模型。 看起来我成功地…

ML Tuning – Cross Validation in Spark

我在https://spark.apache.org/…

如何在React JS中使用fetch从REST API获取预测

我正在开发一个应用程序,其中Flask REST AP…

如何分析ML.NET中多类分类预测得分数组?

我在ML.NET中创建了一个多类分类项目。该项目可以对…

发表回复

您的邮箱地址不会被公开。 必填项已用 * 标注