我对神经网络是新手,正在尝试在一个自定义数据集(单一目录中的猫和狗图片)上训练一个CNN模型。所以我想我在这里做的是大多数教程中常见的操作,但以防万一,我会在这里提供我的完整代码。
首先,我生成要处理的.csv文件:
import osimport torchdevice = ("cuda" if torch.cuda.is_available() else "cpu")train_df = pd.DataFrame(columns=["img_name","label"])train_df["img_name"] = os.listdir("train/")for idx, i in enumerate(os.listdir("train/")): if "cat" in i: train_df["label"][idx] = 0 if "dog" in i: train_df["label"][idx] = 1train_df.to_csv (r'train_csv.csv', index = False, header=True)
然后我准备数据集:
from torch.utils.data import Datasetimport pandas as pdimport osfrom PIL import Imageimport torchclass CatsAndDogsDataset(Dataset): def __init__(self, root_dir, annotation_file, transform=None): self.root_dir = root_dir self.annotations = pd.read_csv(annotation_file) self.transform = transform def __len__(self): return len(self.annotations) def __getitem__(self, index): img_id = self.annotations.iloc[index, 0] img = Image.open(os.path.join(self.root_dir, img_id)).convert("RGB") y_label = torch.tensor(float(self.annotations.iloc[index, 1])) if self.transform is not None: img = self.transform(img) return (img, y_label)
这是我的模型:
import torch.nn as nnimport torchvision.models as modelsclass CNN(nn.Module): def __init__(self, train_CNN=False, num_classes=1): super(CNN, self).__init__() self.train_CNN = train_CNN self.inception = models.inception_v3(pretrained=True, aux_logits=False) self.inception.fc = nn.Linear(self.inception.fc.in_features, num_classes) self.relu = nn.ReLU() self.dropout = nn.Dropout(0.5) self.sigmoid = nn.Sigmoid() def forward(self, images): features = self.inception(images) return self.sigmoid(self.dropout(self.relu(features))).squeeze(1)
这是我的超参数、变换和数据加载器:
from torch.utils.data import DataLoaderimport torchvision.transforms as transformsnum_epochs = 10learning_rate = 0.00001train_CNN = Falsebatch_size = 32shuffle = Truepin_memory = Truenum_workers = 0transform = transforms.Compose( [ transforms.Resize((356, 356)), transforms.RandomCrop((299, 299)), transforms.ToTensor(), transforms.Normalize((0.5, 0.5, 0.5), (0.5, 0.5, 0.5)), ] )dataset = CatsAndDogsDataset("train","train_csv.csv",transform=transform)print(len(dataset))train_set, validation_set = torch.utils.data.random_split(dataset,[162,40])train_loader = DataLoader(dataset=train_set, shuffle=shuffle, batch_size=batch_size,num_workers=num_workers,pin_memory=pin_memory)validation_loader = DataLoader(dataset=validation_set, shuffle=shuffle, batch_size=batch_size,num_workers=num_workers, pin_memory=pin_memory)model = CNN().to(device)criterion = nn.BCELoss()optimizer = torch.optim.Adam(model.parameters(), lr=learning_rate)for name, param in model.inception.named_parameters(): if "fc.weight" in name or "fc.bias" in name: param.requires_grad = True else: param.requires_grad = train_CNN
以及准确率检查:
def check_accuracy(loader, model): if loader == train_loader: print("Checking accuracy on training data") else: print("Checking accuracy on validation data") num_correct = 0 num_samples = 0 model.eval() with torch.no_grad(): for x, y in loader: x = x.to(device=device) y = y.to(device=device) scores = model(x) predictions = torch.tensor([1.0 if i >= 0.5 else 0.0 for i in scores]).to(device) num_correct += (predictions == y).sum() num_samples += predictions.size(0) print( f"Got {num_correct} / {num_samples} with accuracy {float(num_correct)/float(num_samples)*100:.2f}" ) model.train() return f"{float(num_correct)/float(num_samples)*100:.2f}"
这是我的训练函数:
from tqdm import tqdmdef train(): model.train() for epoch in range(num_epochs): loop = tqdm(train_loader, total = len(train_loader), leave = True) if epoch % 2 == 0: loop.set_postfix(val_acc = check_accuracy(validation_loader, model)) for imgs, labels in loop: imgs = imgs.to(device) labels = labels.to(device) outputs = model(imgs) loss = criterion(outputs, labels) optimizer.zero_grad() loss.backward() optimizer.step() loop.set_description(f"Epoch [{epoch}/{num_epochs}]") loop.set_postfix(loss = loss.item())if __name__ == "__main__": train()
0%| | 0/6 [00:00<?, ?it/s]Checking accuracy on validation data0%| | 0/6 [01:13<?, ?it/s, val_acc=60.00]Got 24 / 40 with accuracy 60.00Epoch [0/10]: 100%|██████████| 6/6 [06:02<00:00, 60.39s/it, loss=0.693]Epoch [1/10]: 100%|██████████| 6/6 [04:49<00:00, 48.23s/it, loss=0.693]...Epoch [8/10]: 100%|██████████| 6/6 [06:07<00:00, 61.29s/it, loss=0.693]Epoch [9/10]: 100%|██████████| 6/6 [04:55<00:00, 49.19s/it, loss=0.781]
模型训练得很好,但当我尝试使用它进行预测时,每次在我的Jupyter Notebooks中运行最后一段代码时都会得到不同的结果:
model.eval()img = Image.open('train/cat.22.png').convert("RGB")img_t = transform(img)batch_t = torch.unsqueeze(img_t, 0)out = model(batch_t)print(out)
tensor([0.5276], grad_fn=)
tensor([0.5000], grad_fn=)
tensor([0.5064], grad_fn=)
等等。对于同一张图片每次得到不同的结果。这正常吗?为什么会这样?
回答:
我没有看到你加载训练好的模型。这意味着每次你初始化CNN
模块时,inception.fc
层将被随机权重初始化,这很可能是你每次推理时得到不同结果的原因。
编辑:你在变换流程中有一个随机变换,即RandomCrop
。