将自动编码器拆分为编码器和解码器的Keras实现

我正在尝试创建一个自动编码器,用于以下目的:

  1. 训练模型
  2. 拆分编码器和解码器
  3. 可视化压缩数据(编码器)
  4. 使用任意压缩数据获取输出(解码器)
from keras.layers import Input, Dense, Conv2D, MaxPooling2D, UpSampling2Dfrom keras.models import Modelfrom keras import backend as Kfrom keras.datasets import mnistimport numpy as np(x_train, _), (x_test, _) = mnist.load_data()x_train = x_train.astype('float32') / 255.x_train = x_train[:100,:,:,]x_test = x_test.astype('float32') / 255.x_test = x_trainx_train = np.reshape(x_train, (len(x_train), 28, 28, 1))  # adapt this if using `channels_first` image data formatx_test = np.reshape(x_test, (len(x_test), 28, 28, 1))  # adapt this if using `channels_first` image data format input_img = Input(shape=(28, 28, 1))  # adapt this if using `channels_first` image data formatx = Conv2D(32, (3, 3), activation='relu', padding='same')(input_img)x = MaxPooling2D((2, 2), padding='same')(x)x = Conv2D(32, (3, 3), activation='relu', padding='same')(x)encoded = MaxPooling2D((2, 2), padding='same')(x)# at this point the representation is (7, 7, 32)decoder = Conv2D(32, (3, 3), activation='relu', padding='same')(encoded)x = UpSampling2D((2, 2))(decoder)x = Conv2D(32, (3, 3), activation='relu', padding='same')(x)x = UpSampling2D((2, 2))(x)decoded = Conv2D(1, (3, 3), activation='sigmoid', padding='same')(x)autoencoder = Model(input_img, decoded(encoded(input_img)))autoencoder.compile(optimizer='adadelta', loss='binary_crossentropy')autoencoder.fit(x_train, x_train,                epochs=10,                batch_size=128,                shuffle=True,                validation_data=(x_test, x_test),                #callbacks=[TensorBoard(log_dir='/tmp/tb', histogram_freq=0, write_graph=False)]               )

如何训练并拆分它以使用训练好的权重?


回答:

创建编码器:

input_img = Input(shape=(28, 28, 1))x = Conv2D(32, (3, 3), activation='relu', padding='same')(input_img)x = MaxPooling2D((2, 2), padding='same')(x)x = Conv2D(32, (3, 3), activation='relu', padding='same')(x)encoded = MaxPooling2D((2, 2), padding='same')(x)encoder = Model(input_img, encoded)

创建解码器:

decoder_input= Input(shape_equal_to_encoder_output_shape)decoder = Conv2D(32, (3, 3), activation='relu', padding='same')(decoder_input)x = UpSampling2D((2, 2))(decoder)x = Conv2D(32, (3, 3), activation='relu', padding='same')(x)x = UpSampling2D((2, 2))(x)decoded = Conv2D(1, (3, 3), activation='sigmoid', padding='same')(x)decoder = Model(decoder_input, decoded)

创建自动编码器:

auto_input = Input(shape=(28,28,1))encoded = encoder(auto_input)decoded = decoder(encoded)auto_encoder = Model(auto_input, decoded)

现在您可以根据需要使用这些模型:

  1. 训练自动编码器
  2. 使用编码器和解码器

Related Posts

为什么我们在K-means聚类方法中使用kmeans.fit函数?

我在一个视频中使用K-means聚类技术,但我不明白为…

如何获取Keras中ImageDataGenerator的.flow_from_directory函数扫描的类名?

我想制作一个用户友好的GUI图像分类器,用户只需指向数…

如何查看每个词的tf-idf得分

我试图了解文档中每个词的tf-idf得分。然而,它只返…

如何修复 ‘ValueError: Found input variables with inconsistent numbers of samples: [32979, 21602]’?

我在制作一个用于情感分析的逻辑回归模型时遇到了这个问题…

如何向神经网络输入两个不同大小的输入?

我想向神经网络输入两个数据集。第一个数据集(元素)具有…

逻辑回归与机器学习有何关联

我们正在开会讨论聘请一位我们信任的顾问来做机器学习。一…

发表回复

您的邮箱地址不会被公开。 必填项已用 * 标注