将Tensorflow代码转换为Pytorch – 性能指标差异很大

我将一个用于时间序列分析的Tensorflow代码转换成了Pytorch,结果发现性能差异非常大,实际上Pytorch的层完全无法处理季节性问题。我感觉肯定是遗漏了某些重要的东西。

请帮助找出Pytorch代码中的不足之处,导致学习效果不理想。我注意到当遇到季节变化时,损失值会出现大幅波动,并且无法学习到这些变化。使用相同的层、节点和其他所有设置,我本以为性能应该相近。

# tensorflow codewindow_size = 20batch_size = 32shuffle_buffer_size = 1000def windowed_dataset(series, window_size, batch_size, shuffle_buffer):  dataset = tf.data.Dataset.from_tensor_slices(series)  dataset = dataset.window(window_size + 1, shift=1, drop_remainder=True)  dataset = dataset.flat_map(lambda window: window.batch(window_size + 1))  dataset = dataset.shuffle(shuffle_buffer).map(lambda window: (window[:-1], window[-1]))  dataset = dataset.batch(batch_size).prefetch(1)  return datasetdataset = windowed_dataset(x_train, window_size, batch_size, shuffle_buffer_size)model = tf.keras.models.Sequential([    tf.keras.layers.Dense(100, input_shape=[window_size], activation="relu"),     tf.keras.layers.Dense(10, activation="relu"),     tf.keras.layers.Dense(1)])model.compile(loss="mse", optimizer=tf.keras.optimizers.SGD(lr=1e-6, momentum=0.9))model.fit(dataset,epochs=100,verbose=0)forecast = []for time in range(len(series) - window_size):  forecast.append(model.predict(series[time:time + window_size][np.newaxis]))forecast = forecast[split_time-window_size:]results = np.array(forecast)[:, 0, 0]plt.figure(figsize=(10, 6))plot_series(time_valid, x_valid)plot_series(time_valid, results)tf.keras.metrics.mean_absolute_error(x_valid, results).numpy()

Tensorflow predictions

# pytorch codewindow_size = 20batch_size = 32shuffle_buffer_size = 1000class tsdataset(Dataset):  def __init__(self, series, window_size):    self.series = series    self.window_size = window_size    self.dataset, self.labels = self.preprocess()  def preprocess(self):    series = self.series    final, labels = [], []    for i in range(len(series)-self.window_size):      final.append(np.array(series[i:i+window_size]))      labels.append(np.array(series[i+window_size]))    return torch.from_numpy(np.array(final)), torch.from_numpy(np.array(labels))      def __getitem__(self,index):    # print(self.dataset[index], self.labels[index], index)    return self.dataset[index], self.labels[index]    def __len__(self):    return len(self.dataset)train_dataset = tsdataset(x_train, window_size)train_dataloader = DataLoader(train_dataset, batch_size=batch_size, shuffle=True)class tspredictor(nn.Module):  def __init__(self, window_size, out1, out2, out3):    super(tspredictor, self).__init__()    self.l1 = nn.Linear(window_size, out1)    self.l2 = nn.Linear(out1, out2)    self.l3 = nn.Linear(out2, out3)  def forward(self,seq):    l1 = F.relu(self.l1(seq))    l2 = F.relu(self.l2(l1))    l3 = self.l3(l2)    return l3model = tspredictor(20, 100,10,1)loss_function = nn.MSELoss()optimizer = optim.SGD(model.parameters(), lr=1e-6, momentum=0.9)for epoch in range(100):     for t,l in train_dataloader:      model.zero_grad()      tag_scores = model(t)      loss = loss_function(tag_scores, l)      loss.backward()      optimizer.step()    # print("Epoch is {}, loss is {}".format(epoch, loss.data))forecast = []for time in range(len(series) - window_size):    prediction = model(torch.from_numpy(series[time:time + window_size][np.newaxis]))    forecast.append(prediction)forecast = forecast[split_time-window_size:]results = np.array(forecast)plt.figure(figsize=(10, 6))plot_series(time_valid, x_valid)plot_series(time_valid, results)

Pytorch predictions

要生成数据,可以使用以下代码:

def plot_series(time, series, format="-", start=0, end=None):    plt.plot(time[start:end], series[start:end], format)    plt.xlabel("Time")    plt.ylabel("Value")    plt.grid(False)def trend(time, slope=0):    return slope * timedef seasonal_pattern(season_time):    """Just an arbitrary pattern, you can change it if you wish"""    return np.where(season_time < 0.1,                    np.cos(season_time * 6 * np.pi),                    2 / np.exp(9 * season_time))def seasonality(time, period, amplitude=1, phase=0):    """Repeats the same pattern at each period"""    season_time = ((time + phase) % period) / period    return amplitude * seasonal_pattern(season_time)def noise(time, noise_level=1, seed=None):    rnd = np.random.RandomState(seed)    return rnd.randn(len(time)) * noise_leveltime = np.arange(10 * 365 + 1, dtype="float32")baseline = 10series = trend(time, 0.1)  baseline = 10amplitude = 40slope = 0.005noise_level = 3# Create the seriesseries = baseline + trend(time, slope) + seasonality(time, period=365, amplitude=amplitude)# Update with noiseseries += noise(time, noise_level, seed=51)split_time = 3000time_train = time[:split_time]x_train = series[:split_time]time_valid = time[split_time:]x_valid = series[split_time:]

回答:

损失函数中存在广播问题。将损失函数更改为以下内容可以解决这个问题:

loss = loss_function(tag_scores, l.view(-1,1))

Related Posts

使用LSTM在Python中预测未来值

这段代码可以预测指定股票的当前日期之前的值,但不能预测…

如何在gensim的word2vec模型中查找双词组的相似性

我有一个word2vec模型,假设我使用的是googl…

dask_xgboost.predict 可以工作但无法显示 – 数据必须是一维的

我试图使用 XGBoost 创建模型。 看起来我成功地…

ML Tuning – Cross Validation in Spark

我在https://spark.apache.org/…

如何在React JS中使用fetch从REST API获取预测

我正在开发一个应用程序,其中Flask REST AP…

如何分析ML.NET中多类分类预测得分数组?

我在ML.NET中创建了一个多类分类项目。该项目可以对…

发表回复

您的邮箱地址不会被公开。 必填项已用 * 标注