将scikit-learn的TFIdfVectorizer中的特征名称更新

我在尝试以下代码

from sklearn.feature_extraction.text import TfidfVectorizerimport numpy as nptrain_data = ["football is the sport","gravity is the movie", "education is imporatant"]vectorizer = TfidfVectorizer(sublinear_tf=True, max_df=0.5,                                                 stop_words='english')print "Applying first train data"X_train = vectorizer.fit_transform(train_data)print vectorizer.get_feature_names()print "\n\nApplying second train data"train_data = ["cricket", "Transformers is a film","AIMS is a college"]X_train = vectorizer.transform(train_data)print vectorizer.get_feature_names()print "\n\nApplying fit transform onto second train data"X_train = vectorizer.fit_transform(train_data)print vectorizer.get_feature_names()

这个的输出是

Applying first train data[u'education', u'football', u'gravity', u'imporatant', u'movie', u'sport']Applying second train data[u'education', u'football', u'gravity', u'imporatant', u'movie', u'sport'] Applying fit transform onto second train data[u'aims', u'college', u'cricket', u'film', u'transformers']

我首先使用fit_transform方法将第一组数据应用到vectorizer上,因此它返回了如[u'education', u'football', u'gravity', u'imporatant', u'movie', u'sport']这样的特征名称。之后,我将另一组训练数据应用到同一个vectorizer上,但由于没有使用fit或fit_transform方法,它返回了相同的特征名称。但是我想知道如何在不覆盖之前的特征的情况下更新vectorizer的特征。如果我再次使用fit_transform,之前的特征就会被覆盖。因此,我想更新vectorizer的特征列表。我希望得到类似于[u'education', u'football', u'gravity', u'imporatant', u'movie', u'sport',u'aims', u'college', u'cricket', u'film', u'transformers']的结果。如何实现这一点呢?


回答:

在scikit-learn的术语中,这被称为部分拟合(partial fit),而你无法用TfidfVectorizer来实现这一点。有两种解决方法:

  • 将两个训练集连接起来并重新向量化
  • 使用支持部分拟合的HashingVectorizer。然而,由于它对特征进行哈希处理,因此没有get_feature_names方法,无法保留原始特征。另一个优点是这种方法在内存使用上更加高效。

第一种方法的示例:

from sklearn.feature_extraction.text import TfidfVectorizerimport numpy as nptrain_data1 = ["football is the sport", "gravity is the movie", "education is important"]vectorizer = TfidfVectorizer(stop_words='english')print("Applying first train data")X_train = vectorizer.fit_transform(train_data1)print(vectorizer.get_feature_names())print("\n\nApplying second train data")train_data2 = ["cricket", "Transformers is a film", "AIMS is a college"]X_train = vectorizer.transform(train_data2)print(vectorizer.get_feature_names())print("\n\nApplying fit transform onto second train data")X_train = vectorizer.fit_transform(train_data1 + train_data2)print(vectorizer.get_feature_names())

输出:

Applying first train data['education', 'football', 'gravity', 'important', 'movie', 'sport']Applying second train data['education', 'football', 'gravity', 'important', 'movie', 'sport']Applying fit transform onto second train data['aims', 'college', 'cricket', 'education', 'film', 'football', 'gravity', 'important', 'movie', 'sport', 'transformers']

Related Posts

L1-L2正则化的不同系数

我想对网络的权重同时应用L1和L2正则化。然而,我找不…

使用scikit-learn的无监督方法将列表分类成不同组别,有没有办法?

我有一系列实例,每个实例都有一份列表,代表它所遵循的不…

f1_score metric in lightgbm

我想使用自定义指标f1_score来训练一个lgb模型…

通过相关系数矩阵进行特征选择

我在测试不同的算法时,如逻辑回归、高斯朴素贝叶斯、随机…

可以将机器学习库用于流式输入和输出吗?

已关闭。此问题需要更加聚焦。目前不接受回答。 想要改进…

在TensorFlow中,queue.dequeue_up_to()方法的用途是什么?

我对这个方法感到非常困惑,特别是当我发现这个令人费解的…

发表回复

您的邮箱地址不会被公开。 必填项已用 * 标注