我使用OpenCV从视频文件中加载帧到数组中,并使用sklearn将数据分割为X_train
和X_test
。
我的X_train.shape
是(363, 1, 40, 40, 15)
,目前我正在处理4个类别,我用来学习这些数据的模型代码如下:
model = Sequential() model.add(Conv3D(32, (3,3,3), activation='relu', input_shape=(1, 40, 40, 15), data_format='channels_first')) model.add(MaxPooling3D(pool_size=(1, 2, 2), strides=(1, 2, 2))) model.add(Conv3D(64, (3,3,3), activation='relu')) model.add(MaxPooling3D(pool_size=(1, 2, 2), strides=(1, 2, 2))) model.add(Conv3D(128, (3,3,3), activation='relu')) model.add(Conv3D(128, (3,3,3), activation='relu')) model.add(MaxPooling3D(pool_size=(1, 2, 2), strides=(1, 2, 2))) model.add(Conv3D(256, (2,2,2), activation='relu')) model.add(Conv3D(256, (2,2,2), activation='relu')) model.add(MaxPooling3D(pool_size=(1, 2, 2), strides=(1, 2, 2))) model.add(Flatten()) model.add(Dense(1024)) model.add(Dropout(0.5)) model.add(Dense(1024)) model.add(Dropout(0.5)) model.add(Dense(4, activation='softmax'))
当我尝试加载模型时,我遇到了以下错误:
ValueError: Negative dimension size caused by subtracting 2 from 1 for 'conv3d_44/convolution' (op: 'Conv3D') with input shapes: [?,25,1,1,256], [2,2,2,256,256].
有人能帮我吗?
回答:
这个问题在StackOverflow上已经被讨论过多次:请参见这里或这里。根据你的卷积和池化层参数,每次Conv3D
和MaxPooling3D
后张量都会被下采样。以下是模型在崩溃前的状态:
Layer (type) Output Shape Param # =================================================================conv3d_1 (Conv3D) (None, 32, 38, 38, 13) 896 _________________________________________________________________max_pooling3d_1 (MaxPooling3 (None, 32, 19, 19, 13) 0 _________________________________________________________________conv3d_2 (Conv3D) (None, 30, 17, 17, 64) 22528 _________________________________________________________________max_pooling3d_2 (MaxPooling3 (None, 30, 8, 8, 64) 0 _________________________________________________________________conv3d_3 (Conv3D) (None, 28, 6, 6, 128) 221312 _________________________________________________________________conv3d_4 (Conv3D) (None, 26, 4, 4, 128) 442496 _________________________________________________________________max_pooling3d_3 (MaxPooling3 (None, 26, 2, 2, 128) 0 _________________________________________________________________conv3d_5 (Conv3D) (None, 25, 1, 1, 256) 262400
张量(None, 25, 1, 1, 256)
无法进一步下采样,因此出现了错误。
解决方案是调整Conv3D
参数:要么使用padding='same'
(在这种情况下,卷积后张量形状保持不变,仅在池化层后减半),要么将滤波器大小从3
减小到2
。
示例:
model = Sequential()model.add(Conv3D(32, (3,3,3), activation='relu', input_shape=(1, 40, 40, 15), data_format='channels_first', padding='same'))model.add(MaxPooling3D(pool_size=(1, 2, 2), strides=(1, 2, 2)))model.add(Conv3D(64, (3,3,3), activation='relu', padding='same'))model.add(MaxPooling3D(pool_size=(1, 2, 2), strides=(1, 2, 2)))model.add(Conv3D(128, (3,3,3), activation='relu', padding='same'))model.add(Conv3D(128, (3,3,3), activation='relu', padding='same'))model.add(MaxPooling3D(pool_size=(1, 2, 2), strides=(1, 2, 2)))model.add(Conv3D(256, (2,2,2), activation='relu', padding='same'))model.add(Conv3D(256, (2,2,2), activation='relu', padding='same'))model.add(MaxPooling3D(pool_size=(1, 2, 2), strides=(1, 2, 2)))model.add(Flatten())model.add(Dense(1024))model.add(Dropout(0.5))model.add(Dense(1024))model.add(Dropout(0.5))model.add(Dense(4, activation='softmax'))model.summary()