将OneHotEncoded特征输入分类器时出现错误

我正在尝试为决策树和多项式朴素贝叶斯分类器准备数据。

这是我的数据看起来的样子(pandas数据框)

Label  Feat1  Feat2  Feat3  Feat40        1     3       2      11        0     1       1      22        2     2       1      13        3     3       2      3

我已经将数据分成了dataLabel和dataFeatures。使用dataLabel.ravel()准备了dataLabel

我需要对特征进行离散化处理,以便分类器将它们视为分类而非数值数据。

我尝试使用OneHotEncoder来实现这一点

enc = OneHotEncoder()enc.fit(dataFeatures)chk = enc.transform(dataFeatures)from sklearn.naive_bayes import MultinomialNBmnb = MultinomialNB()from sklearn import metricsfrom sklearn.cross_validation import cross_val_scorescores = cross_val_score(mnb, Y, chk, cv=10, scoring='accuracy')

我得到了这个错误 – bad input shape (64, 16)

这是标签和输入的形状

dataLabel.shape = 72chk.shape = 72,16

为什么分类器不接受onehotencoded特征?

编辑 – 完整的堆栈跟踪代码

/root/anaconda2/lib/python2.7/site-packages/sklearn/utils /validation.py:386: DeprecationWarning: Passing 1d arrays as data is deprecated in 0.17 and willraise ValueError in 0.19. Reshape your data either using X.reshape(-1, 1) if your data has a single feature or X.reshape(1, -1) if it contains a single sample.  DeprecationWarning)Traceback (most recent call last):  File "<stdin>", line 1, in <module>  File "/root/anaconda2/lib/python2.7/site-packages/sklearn /cross_validation.py", line 1433, in cross_val_scorefor train, test in cv)  File "/root/anaconda2/lib/python2.7/site-packages/sklearn/externals/joblib/parallel.py", line 800, in __call__while self.dispatch_one_batch(iterator):  File "/root/anaconda2/lib/python2.7/site-packages/sklearn/externals/joblib/parallel.py", line 658, in dispatch_one_batchself._dispatch(tasks)  File "/root/anaconda2/lib/python2.7/site-packages/sklearn/externals/joblib/parallel.py", line 566, in _dispatchjob = ImmediateComputeBatch(batch)  File "/root/anaconda2/lib/python2.7/site-packages/sklearn/externals/joblib/parallel.py", line 180, in __init__self.results = batch()  File "/root/anaconda2/lib/python2.7/site-packages/sklearn/externals/joblib/parallel.py", line 72, in __call__return [func(*args, **kwargs) for func, args, kwargs in self.items]  File "/root/anaconda2/lib/python2.7/site-packages/sklearn/cross_validation.py", line 1531, in _fit_and_scoreestimator.fit(X_train, y_train, **fit_params)  File "/root/anaconda2/lib/python2.7/site-packages/sklearn/naive_bayes.py", line 527, in fitX, y = check_X_y(X, y, 'csr') File "/root/anaconda2/lib/python2.7/site-packages/sklearn/utils/validation.py", line 515, in check_X_yy = column_or_1d(y, warn=True)  File "/root/anaconda2/lib/python2.7/site-packages/sklearn/utils/validation.py", line 551, in column_or_1draise ValueError("bad input shape {0}".format(shape))

ValueError: bad input shape (64, 16)


回答:

首先,你需要交换chkY,考虑cross_val_score文档。其次,你没有指定Y是什么,所以我希望它是一个一维数组。最后,最好是将所有转换器结合在一个分类器中使用Pipeline,而不是单独使用。像这样:

from sklearn import metricsfrom sklearn.cross_validation import cross_val_scorefrom sklearn.naive_bayes import MultinomialNBfrom sklearn.pipeline import Pipelineclf = Pipeline([    ('transformer', OneHotEncoder()),    ('estimator', MultinomialNB()),])scores = cross_val_score(clf, dataFeatures.values, Y, cv=10, scoring='accuracy')

Related Posts

使用LSTM在Python中预测未来值

这段代码可以预测指定股票的当前日期之前的值,但不能预测…

如何在gensim的word2vec模型中查找双词组的相似性

我有一个word2vec模型,假设我使用的是googl…

dask_xgboost.predict 可以工作但无法显示 – 数据必须是一维的

我试图使用 XGBoost 创建模型。 看起来我成功地…

ML Tuning – Cross Validation in Spark

我在https://spark.apache.org/…

如何在React JS中使用fetch从REST API获取预测

我正在开发一个应用程序,其中Flask REST AP…

如何分析ML.NET中多类分类预测得分数组?

我在ML.NET中创建了一个多类分类项目。该项目可以对…

发表回复

您的邮箱地址不会被公开。 必填项已用 * 标注