将从keras.backend.argmax返回的张量作为索引传递给keras.backend.gather,后者期望’一个整数索引张量。’

我正在尝试实现一个自定义损失函数

def lossFunction(self,y_true,y_pred):     maxi=K.argmax(y_true)     return K.mean((K.max(y_true) -(K.gather(y_pred,maxi)))**2)

训练时出现以下错误


InvalidArgumentError(参见上面的回溯):indices[5] = 51 不在 [0, 32) 范围内 [[Node: loss/dense_3_loss/Gather = Gather[Tindices=DT_INT64, Tparams=DT_FLOAT, validate_indices=true, _device=”/job:localhost/replica:0/task:0/device:CPU:0″](dense_3/BiasAdd, metrics/acc/ArgMax)]]


模型摘要


_________________________________________________________________________________________层(类型)                     输出形状          参数数     连接到                     ====================================================================================================input_1(输入层)             (None, 64, 50, 1)     0                                            ____________________________________________________________________________________________________input_2(输入层)             (None, 64, 50, 1)     0                                            ____________________________________________________________________________________________________conv2d_1(Conv2D)                (None, 32, 25, 16)    272         input_1[0][0]                    ____________________________________________________________________________________________________conv2d_2(Conv2D)                (None, 32, 25, 16)    272         input_2[0][0]                    ____________________________________________________________________________________________________max_pooling2d_1(MaxPooling2D)   (None, 16, 12, 16)    0           conv2d_1[0][0]                   ____________________________________________________________________________________________________max_pooling2d_2(MaxPooling2D)   (None, 16, 12, 16)    0           conv2d_2[0][0]                   ____________________________________________________________________________________________________conv2d_3(Conv2D)                (None, 15, 11, 32)    2080        max_pooling2d_1[0][0]            ____________________________________________________________________________________________________conv2d_4(Conv2D)                (None, 15, 11, 32)    2080        max_pooling2d_2[0][0]            ____________________________________________________________________________________________________max_pooling2d_3(MaxPooling2D)   (None, 8, 6, 32)      0           conv2d_3[0][0]                   ____________________________________________________________________________________________________max_pooling2d_4(MaxPooling2D)   (None, 8, 6, 32)      0           conv2d_4[0][0]                   ____________________________________________________________________________________________________flatten_1(Flatten)              (None, 1536)          0           max_pooling2d_3[0][0]            ____________________________________________________________________________________________________flatten_2(Flatten)              (None, 1536)          0           max_pooling2d_4[0][0]            ____________________________________________________________________________________________________concatenate_1(Concatenate)      (None, 3072)          0           flatten_1[0][0]                                                                                     flatten_2[0][0]                  ____________________________________________________________________________________________________input_3(输入层)             (None, 256)           0                                            ____________________________________________________________________________________________________concatenate_2(Concatenate)      (None, 3328)          0           concatenate_1[0][0]                                                                                 input_3[0][0]                    ____________________________________________________________________________________________________dense_1(Dense)                  (None, 512)           1704448     concatenate_2[0][0]              ____________________________________________________________________________________________________dense_2(Dense)                  (None, 256)           131328      dense_1[0][0]                    ____________________________________________________________________________________________________dense_3(Dense)                  (None, 256)           65792       dense_2[0][0]                    ====================================================================================================总参数:1,906,272可训练参数:1,906,272不可训练参数:0

回答:

Argmax是从最后一个轴取值,而gather是从第一个轴取值。两个轴的元素数量不同,因此这是预期的结果。

如果只处理类别,请使用最后一个轴,因此我们需要对gather方法进行一些调整:

def lossFunction(self,y_true,y_pred):    maxi=K.argmax(y_true) #ok    #反转轴    y_pred = K.permute_dimensions(y_pred,(1,0))    return K.mean((K.max(y_true,axis=-1) -(K.gather(y_pred,maxi)))**2)

Related Posts

使用LSTM在Python中预测未来值

这段代码可以预测指定股票的当前日期之前的值,但不能预测…

如何在gensim的word2vec模型中查找双词组的相似性

我有一个word2vec模型,假设我使用的是googl…

dask_xgboost.predict 可以工作但无法显示 – 数据必须是一维的

我试图使用 XGBoost 创建模型。 看起来我成功地…

ML Tuning – Cross Validation in Spark

我在https://spark.apache.org/…

如何在React JS中使用fetch从REST API获取预测

我正在开发一个应用程序,其中Flask REST AP…

如何分析ML.NET中多类分类预测得分数组?

我在ML.NET中创建了一个多类分类项目。该项目可以对…

发表回复

您的邮箱地址不会被公开。 必填项已用 * 标注