尝试使用这个简单的老虎机代码。
import numpy as npslotConRates = [.02, .013, .013, .015, .018]# 尝试次数N = 10000# 老虎机数量d = len(slotConRates)# 如果赢了就在数组X中加1X = np.zeros((N,d))for i in range(N): for j in range(d): if np.random.rand() < slotConRates[j]: X[i][j] = 1win_reward = np.zeros(d)loss_reward = np.zeros(d)# 通过贝塔分布选择最佳老虎机并更新其胜负记录for i in range(N): selected = 0 MaxRandom = 0 for j in range(d): randomBeta = np.random.beta(win_reward[j] + 1, loss_reward[j] + 1) if randomBeta > MaxRandom: MaxRandom = randomBeta selected = j if X[i][selected] == 1: win_reward[selected] += 1 else: loss_reward[selected] += 1# 显示被认为是最佳的老虎机nSelected = win_reward + loss_reward for i in range(d): print('Machine number ' + str(i + 1) + ' was selected ' + str(nSelected[i]) + ' times')print('Conclusion: Best machine is machine number ' + str(np.argmax(nSelected) + 1))
然而,它总是选择第一台老虎机作为每次迭代的选择。
Machine number 1 was selected 10000.0 timesMachine number 2 was selected 1181.0 timesMachine number 3 was selected 1108.0 timesMachine number 4 was selected 640.0 timesMachine number 5 was selected 1314.0 timesConclusion: Best machine is machine number 1
我应该如何修复这个问题?第二个for
循环是问题所在。你对为什么会发生这种情况有什么见解吗?
回答:
我不是很理解你在做什么,但我觉得这个小的修改(调整最后一个if
–else
块的缩进)可能是你想要的:
...for i in range(N): selected = 0 MaxRandom = 0 for j in range(d): randomBeta = np.random.beta(win_reward[j] + 1, loss_reward[j] + 1) if randomBeta > MaxRandom: MaxRandom = randomBeta selected = j if X[i][selected] == 1: win_reward[selected] += 1 else: loss_reward[selected] += 1...
EDIT:调整后的典型结果:
win_reward = array([ 34., 7., 3., 20., 124.])loss_reward = array([1733., 656., 431., 1271., 5721.])nSelected = array([1767., 663., 434., 1291., 5845.])Machine number 1 was selected 1767.0 timesMachine number 2 was selected 663.0 timesMachine number 3 was selected 434.0 timesMachine number 4 was selected 1291.0 timesMachine number 5 was selected 5845.0 timesConclusion: Best machine is machine number 5(Test sum over selections: 10000.0)
我使用的完整代码列表:
import numpy as npslotConRates = [.02, .013, .013, .015, .018]N = 10000d = len(slotConRates)X = np.zeros((N,d))for i in range(N): for j in range(d): if np.random.rand() < slotConRates[j]: X[i][j] = 1win_reward = np.zeros(d)loss_reward = np.zeros(d)for i in range(N): selected = 0 MaxRandom = 0 for j in range(d): randomBeta = np.random.beta(win_reward[j] + 1, loss_reward[j] + 1) if randomBeta > MaxRandom: MaxRandom = randomBeta selected = j if X[i][selected] == 1: win_reward[selected] += 1 else: loss_reward[selected] += 1nSelected = win_reward + loss_reward print(f'{win_reward = }')print(f'{loss_reward = }')print(f'{nSelected = }')for i in range(d): print(f'Machine number {i + 1} was selected {nSelected[i]} times')print(f'Conclusion: Best machine is machine number {np.argmax(nSelected) + 1}')print(f'(Test sum over selections: {nSelected.sum()})')