检查输入时出错:期望dense_Dense5_input具有4个维度,但得到的数组形状为5,2,5

我正在学习TensorFlow.js,并且尝试创建一个模型来预测两支“队伍”之间随机比赛/游戏的赢家,基于他们的“玩家”。

const rawMatches = [  {    t1: [2, 99, 3, 5, 7],    t2: [4, 75, 48, 23, 6],    winner: 0  },  {    t1: [2, 99, 48, 5, 7],    t2: [4, 75, 3, 23, 6],    winner: 1  },  {    t1: [2, 83, 3, 4, 23],    t2: [4, 75, 58, 25, 78],    winner: 0  },  {    t1: [26, 77, 11, 5, 7],    t2: [3, 43, 48, 23, 9],    winner: 1  },  {    t1: [2, 99, 3, 5, 7],    t2: [6, 65, 28, 23, 6],    winner: 0  }];const train = async () => {  //   [  //     [[2, 99, 3, 5, 7], [4, 75, 48, 23, 6]],  //     [[2, 99, 48, 5, 7], [4, 75, 3, 23, 6]],  //     [[2, 99, 3, 5, 7], [4, 75, 48, 23, 6]]  //   ];  const xs = tf.tensor3d(    rawMatches.map((match, index) => [match.t1, match.t2])  );  //   [[1, 0], [0, 1], [1, 0]];  const labelsTensor = tf.tensor1d(    rawMatches.map(match => (match.winner === 1 ? 1 : 0)),    "int32"  );  const ys = tf.oneHot(labelsTensor, 2);  xs.print();  ys.print();  let model = tf.sequential();  const hiddenLayer = tf.layers.dense({    units: 15,    activation: "sigmoid",    inputShape: [5, 2, 5]  });  const outputLayer = tf.layers.dense({    units: 2,    activation: "softmax"  });  model.add(hiddenLayer);  model.add(outputLayer);  const optimizer = tf.train.sgd(0.2);  model.compile({    optimizer,    loss: "categoricalCrossentropy"  });  model.fit(xs, ys, { epochs: 1 });};train();
<html>  <head>    <!-- Load TensorFlow.js -->    <script src="https://cdn.jsdelivr.net/npm/@tensorflow/[email protected]"> </script>  </head>  <body>  </body></html>

尝试拟合模型后出现以下错误:

Error when checking input: expected dense_Dense11_input to have 4 dimension(s). but got array with shape 5,2,5

包含完整代码的代码沙盒: https://codesandbox.io/s/kr37m63w7


回答:

这个模型有两个问题:

首先是传递给fit方法的输入x的维度。 xs应比第一个inputShape高一个维度。因为xs是一个包含形状为inputShape数据的数组,所以inputShape应该是[2, 5]

其次,由于输入和输出的维度不匹配,你需要使用tf.flatten来更改数据的维度。输入数据的形状是[2, 5] (大小 = 2),而输出数据的形状是[2] (大小 = 1),因此两个维度不匹配。

const rawMatches = [  {    t1: [2, 99, 3, 5, 7],    t2: [4, 75, 48, 23, 6],    winner: 0  },  {    t1: [2, 99, 48, 5, 7],    t2: [4, 75, 3, 23, 6],    winner: 1  },  {    t1: [2, 83, 3, 4, 23],    t2: [4, 75, 58, 25, 78],    winner: 0  },  {    t1: [26, 77, 11, 5, 7],    t2: [3, 43, 48, 23, 9],    winner: 1  },  {    t1: [2, 99, 3, 5, 7],    t2: [6, 65, 28, 23, 6],    winner: 0  }];const train = () => {  const xs = tf.tensor3d(    rawMatches.map((match, index) => [match.t1, match.t2])  );  const labelsTensor = tf.tensor1d(    rawMatches.map(match => (match.winner === 1 ? 1 : 0)),    "int32"  );  const ys = tf.oneHot(labelsTensor, 2);  xs.print();  ys.print();  let model = tf.sequential();  const hiddenLayer = tf.layers.dense({    units: 15,    activation: "sigmoid",    inputShape: [2, 5]  });  const outputLayer = tf.layers.dense({    units: 2,    activation: "softmax"  });  model.add(hiddenLayer);  model.add(tf.layers.flatten())  model.add(outputLayer);  const optimizer = tf.train.sgd(0.2);  model.compile({    optimizer,    loss: "categoricalCrossentropy"  });  model.fit(xs, ys, { epochs: 1 });};train();
<html>  <head>    <!-- Load TensorFlow.js -->    <script src="https://cdn.jsdelivr.net/npm/@tensorflow/[email protected]"> </script>  </head>  <body>  </body></html>

Related Posts

使用LSTM在Python中预测未来值

这段代码可以预测指定股票的当前日期之前的值,但不能预测…

如何在gensim的word2vec模型中查找双词组的相似性

我有一个word2vec模型,假设我使用的是googl…

dask_xgboost.predict 可以工作但无法显示 – 数据必须是一维的

我试图使用 XGBoost 创建模型。 看起来我成功地…

ML Tuning – Cross Validation in Spark

我在https://spark.apache.org/…

如何在React JS中使用fetch从REST API获取预测

我正在开发一个应用程序,其中Flask REST AP…

如何分析ML.NET中多类分类预测得分数组?

我在ML.NET中创建了一个多类分类项目。该项目可以对…

发表回复

您的邮箱地址不会被公开。 必填项已用 * 标注