### InvalidArgumentError: 不兼容的形状: [15,3] 与 [100,3]

我有一个包含超过4000张图片和3个类别的数据集,我正在重用一个原本用于10个类别的胶囊神经网络代码,但将其修改为3个类别。当我运行模型时,在第一个epoch的最后一个点(44/45)出现了以下错误:

   Epoch 1/16   44/45 [============================>.] - ETA: 28s - loss: 0.2304 - capsnet_loss: 0.2303 - decoder_loss: 0.2104 - capsnet_accuracy: 0.6598 - decoder_accuracy: 0.5781    InvalidArgumentError:  不兼容的形状: [15,3] 与 [100,3]         [[node gradient_tape/margin_loss/mul/Mul (defined at <ipython-input-22-9d913bd0e1fd>:11) ]] [Op:__inference_train_function_6157]Function call stack:train_function

训练代码如下:

m = 100epochs = 16# 使用EarlyStopping,当val_accuracy连续10次未提升时结束训练early_stopping = keras.callbacks.EarlyStopping(monitor='val_capsnet_accuracy',mode='max',                                    patience=2,restore_best_weights=True)# 使用ReduceLROnPlateau,当val_accuracy连续5次未提升时,将学习率减半lr_scheduler = keras.callbacks.ReduceLROnPlateau(monitor='val_capsnet_accuracy',mode='max',factor=0.5,patience=4)train_model.compile(optimizer=keras.optimizers.Adam(lr=0.001),loss=[margin_loss,'mse'],loss_weights = [1. ,0.0005],metrics=['accuracy'])train_model.fit([x_train, y_train],[y_train,x_train], batch_size = m, epochs = epochs, validation_data = ([x_test, y_test],[y_test,x_test]),callbacks=[early_stopping,lr_scheduler])

模型结构如下:

Model: "model"__________________________________________________________________________________________________Layer (type)                    Output Shape         Param #     Connected to                     ==================================================================================================input_1 (InputLayer)            [(100, 28, 28, 1)]   0                                            __________________________________________________________________________________________________conv2d (Conv2D)                 (100, 27, 27, 256)   1280        input_1[0][0]                    __________________________________________________________________________________________________max_pooling2d (MaxPooling2D)    (100, 27, 27, 256)   0           conv2d[0][0]                     __________________________________________________________________________________________________conv2d_1 (Conv2D)               (100, 19, 19, 128)   2654336     max_pooling2d[0][0]              __________________________________________________________________________________________________conv2d_2 (Conv2D)               (100, 6, 6, 128)     1327232     conv2d_1[0][0]                   __________________________________________________________________________________________________reshape (Reshape)               (100, 576, 8)        0           conv2d_2[0][0]                   __________________________________________________________________________________________________lambda (Lambda)                 (100, 576, 8)        0           reshape[0][0]                    __________________________________________________________________________________________________digitcaps (CapsuleLayer)        (100, 3, 16)         221184      lambda[0][0]                     __________________________________________________________________________________________________input_2 (InputLayer)            [(None, 3)]          0                                            __________________________________________________________________________________________________mask (Mask)                     (100, 48)            0           digitcaps[0][0]                                                                                   input_2[0][0]                    __________________________________________________________________________________________________capsnet (Length)                (100, 3)             0           digitcaps[0][0]                  __________________________________________________________________________________________________decoder (Sequential)            (None, 28, 28, 1)    1354000     mask[0][0]                       ==================================================================================================Total params: 5,558,032Trainable params: 5,558,032Non-trainable params: 0  

输入层、卷积层和初级胶囊层

img_shape=(28,28,1)inp=L.Input(img_shape,100)# 添加第一个卷积层conv1=L.Conv2D(filters=256,kernel_size=(2,2),activation='relu',padding='valid')(inp)# 添加最大池化层maxpool1=L.MaxPooling2D(pool_size=(1,1))(conv1)# 添加第二个卷积层conv2=L.Conv2D(filters=128,kernel_size=(9,9),activation='relu',padding='valid')(maxpool1)# 添加初级胶囊层conv2=L.Conv2D(filters=8*16,kernel_size=(9,9),strides=2,padding='valid',activation=None)(conv2)# 添加squash激活函数reshape2=L.Reshape([-1,8])(conv2)squashed_output=L.Lambda(squash)(reshape2)

代码来源

x_train.shape –> (4415, 28, 28, 1)

y_train.shape –> (4415, 3)

x_test.shape –> (1104, 28, 28, 1)

y_test.shape –> (1104, 3)

我的代码在这里


回答:

尝试调整X数据集,使得批次大小能完美适应数据,我认为在适应所有数据后,批次大小的剩余值是15

例如:将其设为100的倍数

Related Posts

使用LSTM在Python中预测未来值

这段代码可以预测指定股票的当前日期之前的值,但不能预测…

如何在gensim的word2vec模型中查找双词组的相似性

我有一个word2vec模型,假设我使用的是googl…

dask_xgboost.predict 可以工作但无法显示 – 数据必须是一维的

我试图使用 XGBoost 创建模型。 看起来我成功地…

ML Tuning – Cross Validation in Spark

我在https://spark.apache.org/…

如何在React JS中使用fetch从REST API获取预测

我正在开发一个应用程序,其中Flask REST AP…

如何分析ML.NET中多类分类预测得分数组?

我在ML.NET中创建了一个多类分类项目。该项目可以对…

发表回复

您的邮箱地址不会被公开。 必填项已用 * 标注