我在定义搜索空间的逻辑上遇到了麻烦。
我想搜索以下内容:
- 使用的模型类型(features_and_hours, features_only, hours_only, no_features_no_hours)
- 隐藏单元的数量(output_units)
- 核矩阵的正则化(类型为 l1, l2, 或 l1l2)
- 核矩阵的正则化值(从0.0到0.5的任意值)
- 活动的正则化(类型为 l1, l2, 或 l1l2)
- 活动的正则化值(从0.0到0.5的任意值)
- 训练轮数(num_epochs,可选1, 5, 或10)
- 使用的优化器(adadelta, adam, 或 rmsprop)
- 是否以及如何应用注意力机制(before, after, 或 none)
我按照这个例子(页面上的第二个帖子,由jacobzweig发布)设置了如下方式:
def para_space(): space_paras = {'model_type': hp.choice('model_type', ['features_and_hours', 'features_only', 'hours_only', 'no_features_no_hours']), 'output_units': hp.uniform('output_units', 1, 10), 'kernel_reg': hp.choice('kernel_reg', [{'reg_type':'l1', 'reg_vals': hp.uniform('reg_vals', 0.0, 0.5)}, {'reg_type':'l2','reg_vals': hp.uniform('reg_vals', 0.0, 0.5)}, {'reg_type':'l1l2', 'reg_vals': hp.uniform('reg_vals', 0.0, 0.5)}]), 'activity_reg': hp.choice('activity_reg', [{'reg_type':'l1', 'reg_vals': hp.uniform('reg_vals', 0.0, 0.5)}, {'reg_type':'l2','reg_vals': hp.uniform('reg_vals', 0.0, 0.5)}, {'reg_type':'l1l2', 'reg_vals': hp.uniform('reg_vals', 0.0, 0.5)}]), 'num_epochs': hp.choice('num_epochs', [1, 5, 10]), 'optimizer': hp.choice('optimizer', ['adadelta', 'adam', 'rmsprop']), 'attention': hp.choice('attention', ['before', 'after', 'none'])} return space_paras
我得到的错误是:
Using TensorFlow backend.Traceback (most recent call last): File "Jan22Model1.py", line 374, in <module> best = fmin(lstm_model_1, params, algo=tpe.suggest, max_evals=5, trials=trials) File "/user/pkgs/anaconda2/lib/python2.7/site-packages/hyperopt/fmin.py", line 307, in fmin return_argmin=return_argmin, File "/user/pkgs/anaconda2/lib/python2.7/site-packages/hyperopt/base.py", line 635, in fmin return_argmin=return_argmin) File "/user/pkgs/anaconda2/lib/python2.7/site-packages/hyperopt/fmin.py", line 314, in fmin pass_expr_memo_ctrl=pass_expr_memo_ctrl) File "/user/pkgs/anaconda2/lib/python2.7/site-packages/hyperopt/base.py", line 776, in __init__ raise DuplicateLabel(label)hyperopt.exceptions.DuplicateLabel: reg_vals
但是在例子中,似乎有重复的标签并没有引发错误。我做错了什么?
回答:
我最终重构了空间,解决了这个问题:
def para_space(): space_paras = {'model_type': hp.choice('model_type', ['features_and_hours', 'features_only', 'hours_only', 'no_features_no_hours']), 'output_units': hp.uniform('output_units', 1, 10), 'kernel_reg': hp.choice('kernel_reg', ['l1', 'l2', 'l1_l2']), 'kernel_reg_value': hp.uniform('kernel_reg_value', 0.0, 0.5), 'activity_reg': hp.choice('activity_reg', ['l1', 'l2', 'l1_l2']), 'activity_reg_value': hp.uniform('activity_reg_value', 0.0, 0.5), 'optimizer': hp.choice('optimizer', ['adadelta', 'adam', 'rmsprop']), 'attention': hp.choice('attention', ['before', 'after', 'none'])} return space_paras