更新:附上数据链接,以防你想重现:
https://github.com/amandawang-dev/credit-worthiness-analysis/blob/master/credit_train.csv
https://github.com/amandawang-dev/credit-worthiness-analysis/blob/master/credit_test.csv
我试图使用sklearn的逻辑回归模型来预测一个银行账户的信用是好还是坏。初始数据集如下所示:
然后我将第一列“Class”二值化(’Good’=1, ‘Bad’=0),数据集如下所示:
所以我使用sklearn逻辑模型来预测测试数据(测试数据与预测数据集相同,且“Class”列也进行了二值化),并尝试计算混淆矩阵,代码如下,然后我得到的混淆矩阵是
[[ 0 54] [ 0 138]]
准确率得分为0.71875,我认为混淆矩阵结果是错误的,因为没有真正的正值。有人有任何想法如何解决这个问题吗?谢谢!
from sklearn.linear_model import LogisticRegressionimport numpy as npimport pandas as pdcredit_train = pd.read_csv('credit_train.csv')credit_test = pd.read_csv('credit_test.csv')credit_train["Class"] = (credit_train["Class"] =="Good").astype(int)credit_test["Class"] = (credit_test["Class"] =="Good").astype(int)X=credit_train[['CreditHistory.Critical']]y=credit_train['Class']clf = LogisticRegression(random_state=0).fit(X, y)X_test=credit_test[['CreditHistory.Critical']]y_test=credit_test['Class']y_pred=clf.predict(X_test)from sklearn.metrics import confusion_matrixcm=confusion_matrix(y_pred=y_pred, y_true=y_test)score = clf.score(X_test, y_test)print(score)print(cm)
各列的数据类型:
<class 'pandas.core.frame.DataFrame'>RangeIndex: 808 entries, 0 to 807Data columns (total 17 columns):Class 808 non-null int64Duration 808 non-null int64Amount 808 non-null int64InstallmentRatePercentage 808 non-null int64ResidenceDuration 808 non-null int64Age 808 non-null int64NumberExistingCredits 808 non-null int64NumberPeopleMaintenance 808 non-null int64Telephone 808 non-null int64ForeignWorker 808 non-null int64CheckingAccountStatus.lt.0 808 non-null int64CheckingAccountStatus.0.to.200 808 non-null int64CheckingAccountStatus.gt.200 808 non-null int64CreditHistory.ThisBank.AllPaid 808 non-null int64CreditHistory.PaidDuly 808 non-null int64CreditHistory.Delay 808 non-null int64CreditHistory.Critical 808 non-null int64dtypes: int64(17)memory usage: 107.4 KB
回答:
首先,你的类别略有不平衡,大约71%是1:
credit_test["Class"].value_counts()1 1380 54
当你运行逻辑回归时,它会估计均值,即为1的对数几率,然后是与你的因变量相关的对数几率。如果你查看系数:
[clf.intercept_,clf.coef_][array([0.59140229]), array([[0.9820343]])]
截距似乎大致正确,意味着平均值约为exp(0.59140229)/(1+exp(0.59140229)) = 0.643。你的独立变量CreditHistory.Critical只能是0或1,你的系数是0.9820343,如此一来,结果总是会是p > 0.5,意味着所有标签都是1。
你可以拟合一个没有截距的模型,现在预测不会有偏见,但基本上不太准确:
clf = LogisticRegression(random_state=0,fit_intercept=False).fit(X, y)y_pred=clf.predict(credit_test[['CreditHistory.Critical']])confusion_matrix(y_pred=y_pred, y_true=y_test)array([[42, 12], [84, 54]])
你可以尝试使用其他几个变量来拟合模型以获取信息,这应该会给你更好的结果。