我正在尝试对模型中的多个输入执行Conv1D
操作。我有15个输入,每个输入的大小为1×1500,每个输入都进入一系列层。因此,我有15个卷积模型,我希望在全连接层之前将它们合并。我已经在一个函数中定义了卷积模型,但我不知道如何调用这个函数并将它们合并。
def defineModel(nkernels, nstrides, dropout, input_shape): model = Sequential() model.add(Conv1D(nkernels, nstrides, activation='relu', input_shape=input_shape)) model.add(Conv1D(nkernels*2, nstrides, activation='relu')) model.add(BatchNormalization()) model.add(MaxPooling1D(nstrides)) model.add(Dropout(dropout)) return modelmodels = {}for i in range(15): models[i] = defineModel(64,2,0.75,(64,1))
我已经成功地连接了4个模型,如下所示:
merged = Concatenate()([ model1.output, model2.output, model3.output, model4.output])merged = Dense(512, activation='relu')(merged)merged = Dropout(0.75)(merged)merged = Dense(1024, activation='relu')(merged)merged = Dropout(0.75)(merged)merged = Dense(40, activation='softmax')(merged)model = Model(inputs=[model1.input, model2.input, model3.input, model4.input], outputs=merged)
如何在for循环中对15个层进行操作,因为单独编写15个层并不高效?
回答:
我认为最好的方法是处处使用函数式API:
def defineModel(nkernels, nstrides, dropout, input_shape): l_input = Input( shape=input_shape ) model = Conv1D(nkernels, nstrides, activation='relu')(l_input) model = Conv1D(nkernels*2, nstrides, activation='relu')(model) model = BatchNormalization()(model) model = MaxPooling1D(nstrides)(model) model = Dropout(dropout)(model) return model, l_inputmodels = []inputs = []for i in range(15): model, input = defineModel(64,2,0.75,(64,1)) models.append( model ) inputs.append( input )
然后很容易恢复子模型的输入列表和输出,并将它们合并
merged = Concatenate()(models)merged = Dense(512, activation='relu')(merged)merged = Dropout(0.75)(merged)merged = Dense(1024, activation='relu')(merged)merged = Dropout(0.75)(merged)merged = Dense(40, activation='softmax')(merged)model = Model(inputs=inputs, outputs=merged)
通常,这些操作不是瓶颈。在训练或推理过程中,这些操作不会有重大影响