共享和重用Tensorflow变量

我已经为这个问题挣扎了几天,现在我无法理解到底发生了什么。我开发了一个seq2seq模型,在一个函数中我创建了一些Tensorflow操作和变量,然后将它们返回给调用者。我希望这个函数能够重用所有变量,无论我在作用域中做了什么,我似乎都无法正确实现。以下是该函数的代码:

def create_complete_cell(rnn_size,num_layers,encoder_outputs_tr,batch_size,encoder_state , beam_width ):    with tf.variable_scope("InnerScope" , reuse=tf.AUTO_REUSE):        encoder_outputs_tr =tf.contrib.seq2seq.tile_batch(encoder_outputs_tr, multiplier=beam_width)         encoder_state = tf.contrib.seq2seq.tile_batch(encoder_state, multiplier=beam_width)         batch_size =  batch_size * beam_width         dec_cell = tf.contrib.rnn.MultiRNNCell([create_cell(rnn_size) for _ in range(num_layers)])        attention_mechanism = tf.contrib.seq2seq.BahdanauAttention(num_units=rnn_size, memory=encoder_outputs_tr )         attn_cell = tf.contrib.seq2seq.AttentionWrapper(dec_cell, attention_mechanism , attention_layer_size=rnn_size , output_attention=False)        attn_zero = attn_cell.zero_state(batch_size , tf.float32 )        attn_zero = attn_zero.clone(cell_state = encoder_state)    return attn_zero ,  attn_cell 

以下是调用上述函数的代码:

with tf.variable_scope('scope' ):    intial_train_state , train_cell = create_complete_cell(rnn_size,num_layers,encoder_outputs_tr,batch_size,encoder_state , 1  )with tf.variable_scope('scope' ,reuse=True):    intial_infer_state , infer_cell = create_complete_cell(rnn_size,num_layers,encoder_outputs_tr,batch_size,encoder_state , beam_width  )print("intial_train_state" , intial_train_state)print("intial_infer_state" , intial_infer_state)

打印输出如下:

第一个打印命令输出:

('intial_train_state', AttentionWrapperState(cell_state=(LSTMStateTuple(c=<tf.Tensor 'scope/InnerScope/tile_batch_1/Reshape:0' shape=(?, 512) dtype=float32>, h=<tf.Tensor 'scope/InnerScope/tile_batch_1/Reshape_1:0' shape=(?, 512) dtype=float32>), LSTMStateTuple(c=<tf.Tensor 'scope/InnerScope/tile_batch_1/Reshape_2:0' shape=(?, 512) dtype=float32>, h=<tf.Tensor 'scope/InnerScope/tile_batch_1/Reshape_3:0' shape=(?, 512) dtype=float32>), LSTMStateTuple(c=<tf.Tensor 'scope/InnerScope/tile_batch_1/Reshape_4:0' shape=(?, 512) dtype=float32>, h=<tf.Tensor 'scope/InnerScope/tile_batch_1/Reshape_5:0' shape=(?, 512) dtype=float32>), LSTMStateTuple(c=<tf.Tensor 'scope/InnerScope/tile_batch_1/Reshape_6:0' shape=(?, 512) dtype=float32>, h=<tf.Tensor 'scope/InnerScope/tile_batch_1/Reshape_7:0' shape=(?, 512) dtype=float32>)), attention=<tf.Tensor 'scope/InnerScope/AttentionWrapperZeroState/zeros_1:0' shape=(100, 512) dtype=float32>, time=<tf.Tensor 'scope/InnerScope/AttentionWrapperZeroState/zeros:0' shape=() dtype=int32>, alignments=<tf.Tensor 'scope/InnerScope/AttentionWrapperZeroState/zeros_2:0' shape=(100, ?) dtype=float32>, alignment_history=()))

第二个打印命令输出:

('intial_infer_state', AttentionWrapperState(cell_state=(LSTMStateTuple(c=<tf.Tensor 'scope_1/InnerScope/tile_batch_1/Reshape:0' shape=(?, 512) dtype=float32>, h=<tf.Tensor 'scope_1/InnerScope/tile_batch_1/Reshape_1:0' shape=(?, 512) dtype=float32>), LSTMStateTuple(c=<tf.Tensor 'scope_1/InnerScope/tile_batch_1/Reshape_2:0' shape=(?, 512) dtype=float32>, h=<tf.Tensor 'scope_1/InnerScope/tile_batch_1/Reshape_3:0' shape=(?, 512) dtype=float32>), LSTMStateTuple(c=<tf.Tensor 'scope_1/InnerScope/tile_batch_1/Reshape_4:0' shape=(?, 512) dtype=float32>, h=<tf.Tensor 'scope_1/InnerScope/tile_batch_1/Reshape_5:0' shape=(?, 512) dtype=float32>), LSTMStateTuple(c=<tf.Tensor 'scope_1/InnerScope/tile_batch_1/Reshape_6:0' shape=(?, 512) dtype=float32>, h=<tf.Tensor 'scope_1/InnerScope/tile_batch_1/Reshape_7:0' shape=(?, 512) dtype=float32>)), attention=<tf.Tensor 'scope_1/InnerScope/AttentionWrapperZeroState/zeros_1:0' shape=(300, 512) dtype=float32>, time=<tf.Tensor 'scope_1/InnerScope/AttentionWrapperZeroState/zeros:0' shape=() dtype=int32>, alignments=<tf.Tensor 'scope_1/InnerScope/AttentionWrapperZeroState/zeros_2:0' shape=(300, ?) dtype=float32>, alignment_history=()))

我原本期望两个输出是相同的,因为我正在重用变量,但如你所见,例如在第一个变量的输出中,有类似这样的内容 scope/InnerScope/tile_batch_1/Reshape_1:0

而在第二个变量中

scope_1/InnerScope/tile_batch_1/Reshape_1:0

我不知道为什么在第二次调用时在 scope 后面加了 _1,我有点困惑变量是否被共享,如果没有,我应该做些什么来返回相同的(共享的)变量。

谢谢你


回答:

我注意到这个问题尚未得到回答,我只是重新发布我在Tensorflow GitHub网站上关于同一主题得到的答案。

来源: https://github.com/tensorflow/tensorflow/issues/12916

总结一下,值 scope_1/InnerScope/tile_batch_1/Reshape_1:0 和 scope/InnerScope/tile_batch_1/Reshape_1:0

并不是变量名,而是Tensorflow为重塑操作创建的节点,每个Tensorflow图中的操作都有其独特的名称。

这并不意味着变量没有被共享

Related Posts

L1-L2正则化的不同系数

我想对网络的权重同时应用L1和L2正则化。然而,我找不…

使用scikit-learn的无监督方法将列表分类成不同组别,有没有办法?

我有一系列实例,每个实例都有一份列表,代表它所遵循的不…

f1_score metric in lightgbm

我想使用自定义指标f1_score来训练一个lgb模型…

通过相关系数矩阵进行特征选择

我在测试不同的算法时,如逻辑回归、高斯朴素贝叶斯、随机…

可以将机器学习库用于流式输入和输出吗?

已关闭。此问题需要更加聚焦。目前不接受回答。 想要改进…

在TensorFlow中,queue.dequeue_up_to()方法的用途是什么?

我对这个方法感到非常困惑,特别是当我发现这个令人费解的…

发表回复

您的邮箱地址不会被公开。 必填项已用 * 标注