高学习率导致模型训练失败

我刚刚使用TensorFlow训练了一个三层softmax神经网络。这是从Andrew Ng的课程中学到的,课程编号为3.11 TensorFlow。我修改了代码,以便在每个epoch中查看测试和训练的准确率。

当我增加学习率时,成本大约是1.9,准确率保持在1.66…7不变。我发现学习率越高,这种情况发生的频率就越高。当学习率大约是0.001时,这种情况有时会发生。当学习率大约是0.0001时,这种情况不会发生。

我只想知道为什么会这样。

以下是一些输出数据:

learing_rate = 1Cost after epoch 0: 1312.153492Train Accuracy: 0.16666667Test Accuracy: 0.16666667Cost after epoch 100: 1.918554Train Accuracy: 0.16666667Test Accuracy: 0.16666667Cost after epoch 200: 1.897831Train Accuracy: 0.16666667Test Accuracy: 0.16666667Cost after epoch 300: 1.907957Train Accuracy: 0.16666667Test Accuracy: 0.16666667Cost after epoch 400: 1.893983Train Accuracy: 0.16666667Test Accuracy: 0.16666667Cost after epoch 500: 1.920801Train Accuracy: 0.16666667Test Accuracy: 0.16666667learing_rate = 0.01Cost after epoch 0: 2.906999Train Accuracy: 0.16666667Test Accuracy: 0.16666667Cost after epoch 100: 1.847423Train Accuracy: 0.16666667Test Accuracy: 0.16666667Cost after epoch 200: 1.847042Train Accuracy: 0.16666667Test Accuracy: 0.16666667Cost after epoch 300: 1.847402Train Accuracy: 0.16666667Test Accuracy: 0.16666667Cost after epoch 400: 1.847197Train Accuracy: 0.16666667Test Accuracy: 0.16666667Cost after epoch 500: 1.847694Train Accuracy: 0.16666667Test Accuracy: 0.16666667

这是代码:

def model(X_train, Y_train, X_test, Y_test, learning_rate = 0.0001,          num_epochs = 1500, minibatch_size = 32, print_cost = True):    """    Implements a three-layer tensorflow neural network: LINEAR->RELU->LINEAR->RELU->LINEAR->SOFTMAX.    Arguments:    X_train -- training set, of shape (input size = 12288, number of training examples = 1080)    Y_train -- test set, of shape (output size = 6, number of training examples = 1080)    X_test -- training set, of shape (input size = 12288, number of training examples = 120)    Y_test -- test set, of shape (output size = 6, number of test examples = 120)    learning_rate -- learning rate of the optimization    num_epochs -- number of epochs of the optimization loop    minibatch_size -- size of a minibatch    print_cost -- True to print the cost every 100 epochs    Returns:    parameters -- parameters learnt by the model. They can then be used to predict.    """    ops.reset_default_graph()                         # to be able to rerun the model without overwriting tf variables    tf.set_random_seed(1)                             # to keep consistent results    seed = 3                                          # to keep consistent results    (n_x, m) = X_train.shape                          # (n_x: input size, m : number of examples in the train set)    n_y = Y_train.shape[0]                            # n_y : output size    costs = []                                        # To keep track of the cost    # Create Placeholders of shape (n_x, n_y)    ### START CODE HERE ### (1 line)    X, Y = create_placeholders(n_x, n_y)    ### END CODE HERE ###    # Initialize parameters    ### START CODE HERE ### (1 line)    parameters = initialize_parameters()    ### END CODE HERE ###    # Forward propagation: Build the forward propagation in the tensorflow graph    ### START CODE HERE ### (1 line)    Z3 = forward_propagation(X, parameters)    ### END CODE HERE ###    # Cost function: Add cost function to tensorflow graph    ### START CODE HERE ### (1 line)    cost = compute_cost(Z3, Y)    ### END CODE HERE ###    # Backpropagation: Define the tensorflow optimizer. Use an AdamOptimizer.    ### START CODE HERE ### (1 line)    optimizer = tf.train.AdamOptimizer(learning_rate).minimize(cost)    ### END CODE HERE ###    # Initialize all the variables    init = tf.global_variables_initializer()    # Calculate the correct predictions    correct_prediction = tf.equal(tf.argmax(Z3), tf.argmax(Y))    # Calculate accuracy on the test set    accuracy = tf.reduce_mean(tf.cast(correct_prediction, "float"))    # Start the session to compute the tensorflow graph    with tf.Session() as sess:        # Run the initialization        sess.run(init)        # Do the training loop        for epoch in range(num_epochs):            epoch_cost = 0.                       # Defines a cost related to an epoch            num_minibatches = int(m / minibatch_size) # number of minibatches of size minibatch_size in the train set            seed = seed + 1            minibatches = random_mini_batches(X_train, Y_train, minibatch_size, seed)            for minibatch in minibatches:                # Select a minibatch                (minibatch_X, minibatch_Y) = minibatch                # IMPORTANT: The line that runs the graph on a minibatch.                # Run the session to execute the "optimizer" and the "cost", the feedict should contain a minibatch for (X,Y).                ### START CODE HERE ### (1 line)                _ , minibatch_cost = sess.run([optimizer, cost], feed_dict={X: minibatch_X, Y: minibatch_Y})                ### END CODE HERE ###                epoch_cost += minibatch_cost / num_minibatches            # Print the cost every epoch            if print_cost == True and epoch % 100 == 0:                print ("Cost after epoch %i: %f" % (epoch, epoch_cost))                print ("Train Accuracy:", accuracy.eval({X: X_train, Y: Y_train}))                print ("Test Accuracy:", accuracy.eval({X: X_test, Y: Y_test}))            if print_cost == True and epoch % 5 == 0:                costs.append(epoch_cost)        # plot the cost        plt.plot(np.squeeze(costs))        plt.ylabel('cost')        plt.xlabel('iterations (per tens)')        plt.title("Learning rate =" + str(learning_rate))        plt.show()        # lets save the parameters in a variable        parameters = sess.run(parameters)        print ("Parameters have been trained!")        print ("Train Accuracy:", accuracy.eval({X: X_train, Y: Y_train}))        print ("Test Accuracy:", accuracy.eval({X: X_test, Y: Y_test}))        return parametersparameters = model(X_train, Y_train, X_test, Y_test,learning_rate=0.001)

回答:

阅读了其他答案后,我对一些观点仍然不太满意,特别是因为我觉得这个问题可以(并且已经)很好地可视化,以触及这里提出的论点。

首先,我同意@[隐藏人名]在他回答中提到的大部分内容,他提到了一些合理的起始值:
高学习率通常不会使你收敛,而是会让你在解的周围无限地跳动。
太小的学习率通常会导致非常慢的收敛,你可能会做很多“额外的工作”。在下面的信息图中可视化(忽略参数),对于二维参数空间:具有不同参数的梯度下降

你的问题很可能是由于“类似的东西”导致的,如右图所示。此外,还有一点至今未被提及,那就是最佳学习率(如果有这样的事情的话)在很大程度上取决于你的特定问题设置;对于我的问题,平滑收敛的学习率可能与你的相差几个数量级。不幸的是,尝试几个值来缩小范围,以便你可以实现一些合理的结果,这也是有意义的,即你在你的帖子中所做的。

Related Posts

在使用k近邻算法时,有没有办法获取被使用的“邻居”?

我想找到一种方法来确定在我的knn算法中实际使用了哪些…

Theano在Google Colab上无法启用GPU支持

我在尝试使用Theano库训练一个模型。由于我的电脑内…

准确性评分似乎有误

这里是代码: from sklearn.metrics…

Keras Functional API: “错误检查输入时:期望input_1具有4个维度,但得到形状为(X, Y)的数组”

我在尝试使用Keras的fit_generator来训…

如何使用sklearn.datasets.make_classification在指定范围内生成合成数据?

我想为分类问题创建合成数据。我使用了sklearn.d…

如何处理预测时不在训练集中的标签

已关闭。 此问题与编程或软件开发无关。目前不接受回答。…

发表回复

您的邮箱地址不会被公开。 必填项已用 * 标注