我尝试进行基础的机器学习。因此,这里是我用于二元分类的感知器类。
class perceptron(): def __init__(self, x, y, threshold=0.5, learning_rate=0.1, max_epochs=10): self.threshold = threshold self.learning_rate = learning_rate self.x = x self.y = y self.max_epochs = max_epochs def initialize(self): self.weights = np.random.rand(len(self.x[0])) def train(self): epoch = 0 while True: error_count = 0 epoch += 1 for (x,y) in zip(self.x, self.y): error_count += self.train_observation(x, y, error_count) print('Epoch: {0} Error count: {1}'.format(epoch, error_count)) if error_count == 0: print('Training successful') break if epoch >= self.max_epochs: print('Reached max epochs') break def train_observation(self, x, y, error_count): result = np.dot(x, self.weights) > self.threshold error = y - result if error != 0: error_count += 1 for index, value in enumerate(x): self.weights[index] += self.learning_rate * error * value return error_count def predict(self, x): return int(np.dot(x, self.weights) > self.threshold)
我想对列表值的总和进行分类,如果总和大于等于0(表示1),否则(表示0)。因此,我创建了50个长度为10的数组,每个数组包含随机整数值,范围为[-3, 3]:
def sum01(x): if sum(x) >= 0: return 1 else: return 0x = np.random.randint(low=-3, high=3, size=(50,10))y = [sum01(z) for z in a]
然后我初始化并训练模型:
p = perceptron(x, y)p.initialize()p.train()
然后我进行检查,发现很多预测结果不正确,我做错了什么?
predics = [(p.predict(i), sumab(i)) for i in np.random.randint(low=-3, high=3, size=(10, 10))]print(predics)
回答:
在进行了小错误修复后重新运行你的代码,我看到损失减少到0,并且输出了正确的结果 –
p = perceptron(x, y)p.initialize()p.train()
Epoch: 1 Error count: 196608Epoch: 2 Error count: 38654836736Epoch: 3 Error count: 268437504Epoch: 4 Error count: 0Training successful
predics = [(p.predict(i), sum01(i)) for i in np.random.randint(low=-3, high=3, size=(10, 10))]print(predics)
[(1, 1), (0, 0), (0, 0), (0, 0), (1, 1), (0, 0), (0, 0), (0, 0), (0, 0), (0, 0)]
解决方案
你的代码需要进行几个快速修改 –
- 定义x和y时:
x = np.random.randint(low=-3, high=3, size=(50,10))y = [sum01(z) for z in x] #将这里的a改为x
- 获取预测结果时:
#将sumab改为sum01predics = [(p.predict(i), sum01(i)) for i in np.random.randint(low=-3, high=3, size=(10, 10))]
这样应该就可以工作了。你的完整代码变为 –
class perceptron(): def __init__(self, x, y, threshold=0.5, learning_rate=0.1, max_epochs=10): self.threshold = threshold self.learning_rate = learning_rate self.x = x self.y = y self.max_epochs = max_epochs def initialize(self): self.weights = np.random.rand(len(self.x[0])) def train(self): epoch = 0 while True: error_count = 0 epoch += 1 for (x,y) in zip(self.x, self.y): error_count += self.train_observation(x, y, error_count) print('Epoch: {0} Error count: {1}'.format(epoch, error_count)) if error_count == 0: print('Training successful') break if epoch >= self.max_epochs: print('Reached max epochs') break def train_observation(self, x, y, error_count): result = np.dot(x, self.weights) > self.threshold error = y - result if error != 0: error_count += 1 for index, value in enumerate(x): self.weights[index] += self.learning_rate * error * value return error_count def predict(self, x): return int(np.dot(x, self.weights) > self.threshold) def sum01(x): if sum(x) >= 0: return 1 else: return 0 x = np.random.randint(low=-3, high=3, size=(50,10))y = [sum01(z) for z in x]p = perceptron(x, y)p.initialize()p.train()predics = [(p.predict(i), sum01(i)) for i in np.random.randint(low=-3, high=3, size=(10, 10))]print(predics)