我目前正在尝试使用Udacity的自主驾驶汽车模拟器(模拟器),但是在运行drive.py和模拟器文件时,连接始终无法建立 – 它只是显示“accepeted”,而不是实际连接。当我查看模拟器的输出日志时,发现了以下内容:
|Fatal|WebSocket.acceptException|System.Net.Sockets.SocketException: 无法建立连接,因为目标机器主动拒绝。
at System.Net.Sockets.Socket.Connect (System.Net.EndPoint remoteEP, Boolean requireSocketPolicy) [0x00000] in <filename unknown>:0
at System.Net.Sockets.Socket.Connect (System.Net.EndPoint remoteEP) [0x00000] in <filename unknown>:0
at System.Net.Sockets.TcpClient.Connect (System.Net.IPEndPoint remote_end_point) [0x00000] in <filename unknown>:0
at System.Net.Sockets.TcpClient.Connect (System.Net.IPAddress[] ipAddresses, Int32 port) [0x00000] in <filename unknown>:0
每次我尝试建立连接时都会出现这个错误。以下是服务器端的代码(drive.py文件)
import base64 #用于无损编码传输
from datetime import datetime #设置帧时间戳
import os #写入和读取文件
import numpy as np
import shutil
import socketio #服务器
from flask import Flask #用于Web设备的框架
from io import BytesIO #在内存中操作字符串和字节数据
import eventlet
import eventlet.wsgi
import cv2
import tensorflow as tf
import keras
from keras.models import load_model
from PIL import Image
height = 320
width = 160
def resize(image):
return cv2.resize(image, (width, height), cv2.INTER_AREA)
#服务器初始化
sio = socketio.Server(always_connect = True )
#flask web应用
application = Flask(__name__)
#初始化空模型和图像数组
net = None
image_array_before = None
#速度限制
max_speed = 30
min_speed = 10
speed_limit = max_speed
#服务器事件处理器
@sio.on('telemetry')
def telemetry(sid, data):
if data:
steering_angle = float(data["steering_angle"])
throttle = float(data["throttle"])
speed = float(data["speed"])
image = Image.open(BytesIO(base64.b64decode(data["image"])))
#保存帧
timestamp = datetime.utcnow().strftime('%Y_%m_%d_%H_%M_%S_%f')[:-3]
image_filename = os.path.join(r'path', timestamp)
image.save('{}.jpg'.format(image_filename))
try:
image = np.asarray(image)
image = resize(image)
image = np.array([image])
steering_angle = float(net.predict(image))
global speed_limit
if speed > speed_limit:
speed_limit = min_speed
else:
speed_limit = max_speed
throttle = (1.0 - steering_angle**2 - (speed/speed_limit)**2)
print ('{} {} {}'.format(steering_angle, throttle, speed))
send_control(steering_angle, throttle)
except Exception as e:
print (e)
else:
sio.emit('manual', data={}, skip_sid = True)
@sio.on('connect')
def connect(sid, environ):
print("connect ", sid)
send_control(0,0)
def send_control(steering_angle, throttle):
sio.emit(
"steer",
data = {
"steering_angle": steering_angle.__str__(),
"throttle": throttle.__str__()
},
skip_sid = True)
if __name__ == "__main__":
net = load_model('path')
application = socketio.Middleware(sio, application)
#部署
eventlet.wsgi.server(eventlet.listen(('localhost', 4567)), application)
以下是drive.py文件的输出日志。正如你所见,它显示为“accepted”,但之后没有打印“connected”或传输数据:
enter code here2021-01-10 15:07:27.659254: W tensorflow/stream_executor/platform/default/dso_loader.cc:60] 无法加载动态库 'cudart64_110.dll'; dlerror: cudart64_110.dll 未找到
2021-01-10 15:07:27.668272: I tensorflow/stream_executor/cuda/cudart_stub.cc:29] 如果您的机器上没有设置GPU,请忽略上述cudart dlerror。
2021-01-10 15:07:56.969613: I tensorflow/compiler/jit/xla_cpu_device.cc:41] 未创建XLA设备,tf_xla_enable_xla_devices未设置
2021-01-10 15:07:56.998282: W tensorflow/stream_executor/platform/default/dso_loader.cc:60] 无法加载动态库 'nvcuda.dll'; dlerror: nvcuda.dll 未找到
2021-01-10 15:07:57.271013: W tensorflow/stream_executor/cuda/cuda_driver.cc:326] 对cuInit的调用失败:未知错误(303)
2021-01-10 15:07:57.292101: I tensorflow/stream_executor/cuda/cuda_diagnostics.cc:169] 为主机LAPTOP-D2EPGUQF检索CUDA诊断信息
2021-01-10 15:07:57.390264: I tensorflow/stream_executor/cuda/cuda_diagnostics.cc:176] 主机名:LAPTOP-D2EPGUQF
2021-01-10 15:07:57.548306: I tensorflow/core/platform/cpu_feature_guard.cc:142] 此TensorFlow二进制文件使用oneAPI Deep Neural Network Library(oneDNN)进行了优化,以在性能关键操作中使用以下CPU指令:AVX2
要在其他操作中启用它们,请使用适当的编译器标志重新构建TensorFlow。
2021-01-10 15:07:57.998352: I tensorflow/compiler/jit/xla_gpu_device.cc:99] 未创建XLA设备,tf_xla_enable_xla_devices未设置
(2056) wsgi 在 http://127.0.0.1:4567 上启动
(2056) accepted ('127.0.0.1', 52432)
我尝试通过禁用防火墙来修复它,但没有效果。您知道可能出了什么问题吗?谢谢!
回答:
尝试将python-engineio版本降级到3.13.2,将python-socketio降级到4.6.1。