Flutter TFLite 错误:未找到“metal_delegate.h”文件

我在项目中尝试使用TensorFlow Lite机器学习模型时,运行项目时遇到了一个错误:

↳    ** BUILD FAILED **Xcode's output:↳    /Users/tejasravishankar/Developer/flutter/.pub-cache/hosted/pub.dartlang.org/tflite-1.1.1/ios/Classes/TflitePlugin.mm:21:9: fatal error: 'metal_delegate.h' file not found    #import "metal_delegate.h"            ^~~~~~~~~~~~~~~~~~    1 error generated.    note: Using new build system    note: Building targets in parallel    note: Planning build    note: Constructing build descriptionCould not build the application for the simulator.Error launching application on iPhone 11 Pro Max.

我尝试过flutter clean,也尝试过从ios目录中删除PodfilePodfile.lock,但这些操作都没有改变任何情况。

这是我的代码:

import 'dart:io';import 'package:flutter/material.dart';import 'package:tflite/tflite.dart';import 'package:image_picker/image_picker.dart';void main() => runApp(TensorflowApp());const String pet = 'Pet Recognizer';class TensorflowApp extends StatefulWidget {  @override  _TensorflowAppState createState() => _TensorflowAppState();}class _TensorflowAppState extends State<TensorflowApp> {  String _model = pet;  File _image;  double _imageWidth;  double _imageHeight;  // ignore: unused_field  bool _isLoading = false;  List _predictions;  _selectFromImagePicker() async {    PickedFile _pickedImage =        await ImagePicker().getImage(source: ImageSource.gallery);    File _pickedImageFile = _pickedFileFormatter(_pickedImage);    if (_pickedImage == null) {      return;    } else {      setState(() {        _isLoading = true;      });      _predictImage(_pickedImageFile);    }  }  _predictImage(File image) async {    await _petRecognizerV1(image);    FileImage(image).resolve(ImageConfiguration()).addListener(      ImageStreamListener(        (ImageInfo info, bool _) {          setState(() {            _imageWidth = info.image.height.toDouble();            _imageHeight = info.image.height.toDouble();          });        },      ),    );    setState(() {      _image = image;      _isLoading = false;    });  }  _petRecognizerV1(File image) async {    List<dynamic> _modelPredictions = await Tflite.detectObjectOnImage(      path: image.path,      model: pet,      threshold: 0.3,      imageMean: 0.0,      imageStd: 255.0,      numResultsPerClass: 1,    );    setState(() {      _predictions = _modelPredictions;    });  }  _pickedFileFormatter(PickedFile pickedFile) {    File formattedFile = File(pickedFile.path);    return formattedFile;  }  renderBoxes(Size screen) {    if (_predictions == null) {      return [];    } else {      if (_imageHeight == null || _imageWidth == null) {        return [];      }      double factorX = screen.width;      double factorY = _imageHeight / _imageHeight * screen.width;      return _predictions.map((prediction) {        return Positioned(          left: prediction['rect']['x'] * factorX,          top: prediction['rect']['y'] * factorY,          width: prediction['rect']['w'] * factorX,          height: prediction['rect']['h'] * factorY,          child: Container(            decoration: BoxDecoration(              border: Border.all(color: Colors.green, width: 3.0),            ),            child: Text(              '${prediction["detectedClass"]} ${(prediction["confidenceInClass"]) * 100.toStringAsFixed(0)}',              style: TextStyle(                background: Paint()..color = Colors.green,                color: Colors.white,                fontSize: 15.0,              ),            ),          ),        );      }).toList();    }  }  @override  void initState() {    super.initState();    _isLoading = true;    _loadModel().then((value) {      setState(() {        _isLoading = false;      });    });  }  _loadModel() async {    Tflite.close();    try {      String response;      if (_model == pet) {        response = await Tflite.loadModel(          model: 'assets/pet_recognizer.tflite',          labels: 'assets/pet_recognizer.txt',        );      }    } catch (error) {      print(error);    }  }  @override  Widget build(BuildContext context) {    Size size = MediaQuery.of(context).size;    return MaterialApp(      debugShowCheckedModeBanner: false,      home: Scaffold(        appBar: AppBar(          backgroundColor: Colors.white,          title: Text('TFLite Test'),        ),        floatingActionButton: FloatingActionButton(          child: Icon(Icons.image),          tooltip: 'Pick Image From Gallery',          onPressed: () => _selectFromImagePicker,        ),        body: Stack(          children: <Widget>[            Positioned(              top: 0.0,              left: 0.0,              width: size.width,              child: _image == null                  ? Text('No Image Selected')                  : Image.file(_image),            ),            renderBoxes(size),          ],        ),      ),    );  }}

我个人认为我的代码没有问题,我还尝试运行

flutter pub get

多次成功执行,返回成功代码0,但这并没有解决问题…

我不知道接下来该怎么做,非常感谢任何帮助!谢谢,祝好,感激你的帮助 🙂


回答:

将TensorFlowLiteC降级到2.2.0对我有用

  1. 在/ios/Podfile.lock中将TensorFlowLiteC降级到2.2.0
  2. 在你的/ios文件夹中运行pod install

详见 https://github.com/shaqian/flutter_tflite/issues/139#issuecomment-668252599

Related Posts

使用LSTM在Python中预测未来值

这段代码可以预测指定股票的当前日期之前的值,但不能预测…

如何在gensim的word2vec模型中查找双词组的相似性

我有一个word2vec模型,假设我使用的是googl…

dask_xgboost.predict 可以工作但无法显示 – 数据必须是一维的

我试图使用 XGBoost 创建模型。 看起来我成功地…

ML Tuning – Cross Validation in Spark

我在https://spark.apache.org/…

如何在React JS中使用fetch从REST API获取预测

我正在开发一个应用程序,其中Flask REST AP…

如何分析ML.NET中多类分类预测得分数组?

我在ML.NET中创建了一个多类分类项目。该项目可以对…

发表回复

您的邮箱地址不会被公开。 必填项已用 * 标注