我有一份包含约3600行和27列的数据。在这些列中有一列的标签是从1到10的数字,我希望根据其他列来预测这个标签。
从头开始构建的模型:
import tensorflow as tfsess = tf.Session()import kerasimport pandasimport sklearnimport matplotlibimport pandas as pddf = pd.read_csv('data.csv')dataset = df.valuesX = dataset[:,0:27]Y = dataset[:, 8] ///我希望第8列作为我的标签列from sklearn import preprocessingmin_max_scaler = preprocessing.MinMaxScaler()X_scale = min_max_scaler.fit_transform(X)from sklearn.model_selection import train_test_splitX_train, X_val_and_test, Y_train, Y_val_and_test = train_test_split(X_scale, Y, test_size=0.3)X_val, X_test, Y_val, Y_test = train_test_split(X_val_and_test, Y_val_and_test, test_size=0.5)from keras.models import Sequentialfrom keras.layers import Densemodel = Sequential([ Dense(32, activation='relu', input_shape=(27,)), Dense(32, activation='relu'), Dense(1, activation='softmax'),])model.compile(optimizer='adam', loss='categorical_crossentropy', metrics=['accuracy'])Ytest = keras.utils.to_categorical(Y_train,)print('The one hot label is:', Y_train[5])hist = model.fit(X_train, Ytest, batch_size=32, epochs=20, validation_data=(X_val, Y_val))
错误:
ValueError: Error when checking target: expected dense_84 to have shape (1,) but got array with shape (11,)
我完全不知道哪里出了问题。希望能得到一些指引。
回答:
有两点需要注意:
1 – 看起来你忘记对Y_train
进行独热编码了,错误信息显示你的最后一层期望得到形状为[batch_size, 11]的张量。
或者
2 – 你的最后一个Dense层应该有11个节点而不是1个