分类变量的限制值为53

我正在使用R编程语言。我试图将“随机森林”(一种统计模型)拟合到我的数据中,但问题在于:我的一个分类变量拥有超过53个类别——显然,R中的“随机森林”包不允许用户有超过53个类别,这阻止了我使用这个变量进行建模。理想情况下,我希望能使用这个变量。

为了说明这个例子,我创建了一个数据集(称为“data”),其中一个变量拥有超过53个类别:

#load librarieslibrary(caret)library(randomforest)library(ranger)#first data setcat_var <- c("a","b", "c", "d", "e", "f", "g", "h", "i", "j", "k", "l", "m", "n", "o", "p", "q", "r", "s", "t", "u", "v", "w", "x", "y", "z", "aa", "bb", "cc", "dd", "ee", "ff", "gg", "hh", "ii", "jj", "kk", "ll", "mm", "nn", "oo", "pp", "qq", "rr", "ss", "tt", "uu", "vv", "ww", "xx", "yy", "zz", "aaa", "bbb")var_1 <- rnorm(54,10,10)var_2 <- rnorm(54, 5, 5)var_3 <- rnorm(54, 6,18)response <- c("a","b")response <- sample(response, 54, replace=TRUE, prob=c(0.3, 0.7))data_1 = data.frame(cat_var, var_1, var_2, var_3, response)data_1$response = as.factor(data_1$response)data_1$cat_var = as.factor(data_1$cat_var)#second data setcat_var <- c("a","b", "c", "d", "e", "f", "g", "h", "i", "j", "k", "l", "m", "n", "o", "p", "q", "r", "s", "t", "u", "v", "w", "x", "y", "z", "aa", "bb", "cc", "dd", "ee", "ff", "gg", "hh", "ii", "jj", "kk", "ll", "mm", "nn", "oo", "pp", "qq", "rr", "ss", "tt", "uu", "vv", "ww", "xx", "yy", "zz", "aaa", "bbb")var_1 <- rnorm(54,10,10)var_2 <- rnorm(54, 5, 5)var_3 <- rnorm(54, 6,18)response <- c("a","b")response <- sample(response, 54, replace=TRUE, prob=c(0.3, 0.7))data_2 = data.frame(cat_var, var_1, var_2, var_3, response)data_2$response = as.factor(data_2$response)data_2$cat_var = as.factor(data_2$cat_var)# third data setcat_var <- c("a","b", "c", "d", "e", "f", "g", "h", "i", "j", "k", "l", "m", "n", "o", "p", "q", "r", "s", "t", "u", "v", "w", "x", "y", "z", "aa", "bb", "cc", "dd", "ee", "ff", "gg", "hh", "ii", "jj", "kk", "ll", "mm", "nn", "oo", "pp", "qq", "rr", "ss", "tt", "uu", "vv", "ww", "xx", "yy", "zz", "aaa", "bbb")var_1 <- rnorm(54,10,10)var_2 <- rnorm(54, 5, 5)var_3 <- rnorm(54, 6,18)response <- c("a","b")response <- sample(response, 54, replace=TRUE, prob=c(0.3, 0.7))data_3 = data.frame(cat_var, var_1, var_2, var_3, response)data_3$response = as.factor(data_3$response)data_3$cat_var = as.factor(data_3$cat_var)#combine data setsdata = rbind(data_1, data_2, data_3)

从这里开始,我对拟合随机森林模型感兴趣。我查看了不同的stackoverflow帖子(例如 R randomForest too many categories error even with fewer than 53 categories , R – Random Forest and more than 53 categories),以下是我注意到的情况。

如果你尝试直接拟合随机森林模型,会发生以下情况:

#random forest using the "Randomforest" libraryrf = randomForest(response ~ var_1 + var_2 + var_3 + cat_var, data=data, ntree=50, mtry=2)Error in randomForest.default(m, y, ...) :   Can not handle categorical predictors with more than 53 categories.

在其中一个帖子中,一位用户建议使用“caret”库来拟合模型——显然,caret模型没有53个类别的限制。这确实有效,但我不能确定这是否正确:

#random forest using the "caret" and "ranger" libraries: (are these correct?)random_forest <- train(response ~.,                  data = data,                  method = 'ranger')random_forest <- train(response ~.,                  data = data,                  method = 'rf')

最后,另一位用户建议使用“模型矩阵”方法,但我不能确定我是否完全理解了这种方法:

#model matrix methoddummyMat <- model.matrix(response ~ var_1 + var_2 + var_3 + cat_var, data, # set contrasts.arg to keep all levels                         contrasts.arg = list(var_1 = contrasts(data$var_1, contrasts = T),  var_3 = contrasts(data$var_3, contrasts = T),  cat_var = contrasts(data$cat_var, contrasts = F)                                             var_2 = contrasts(data$var2, contrasts = T))) data2 <- cbind(data, dummyMat[,c(4:ncol(dummyMat)]) # just removing intercept columnrf = randomForest(response ~ var_1 + var_2 + var_3 + cat_var, data=data2, ntree=50, mtry=2)

请问有人能建议我如何解决这个问题吗?第二个方法(使用“caret”)是否正确?

谢谢


回答:

我可以告诉你,caret方法是正确的。caret包含了数据分割、预处理、特征选择和使用重采样交叉验证的模型调优工具。这里我发布了一个使用caret包拟合模型的典型工作流程(以你发布的数据为例)。

首先,我们为所选模型的超参数调优设置一种交叉验证方法(在你的情况下,调优参数是mtry,对于rangerrandomForestsplitrulemin.node.size对于ranger)。在示例中,我选择了k折交叉验证,k=10

library(caret)control <- trainControl(method="cv",number = 10)

然后我们创建一个包含待调参数可能值的网格

rangergrid <- expand.grid(mtry=2:(ncol(data)-1),splitrule="extratrees",min.node.size=seq(0.1,1,0.1))rfgrid <- expand.grid(mtry=2:(ncol(data)-1))

最后,我们拟合所选的模型:

random_forest_ranger <- train(response ~.,                        data = data,                        method = 'ranger',                       trControl=control,                       tuneGrid=rangergrid)random_forest_rf <- train(response ~.,                        data = data,                        method = 'rf',                       trControl=control,                       tuneGrid=rfgrid)

train函数的输出看起来像这样:

> random_forest_rfRandom Forest 162 samples  4 predictor  2 classes: 'a', 'b' No pre-processingResampling: Cross-Validated (10 fold) Summary of sample sizes: 146, 146, 146, 145, 146, 146, ... Resampling results across tuning parameters:  mtry  Accuracy   Kappa        2     0.6852941   0.00000000  3     0.6852941   0.00000000  4     0.6602941  -0.04499494Accuracy was used to select the optimal model using the largest value.The final value used for the model was mtry = 2.

关于caret包的更多信息,请查看在线的指南

Related Posts

使用LSTM在Python中预测未来值

这段代码可以预测指定股票的当前日期之前的值,但不能预测…

如何在gensim的word2vec模型中查找双词组的相似性

我有一个word2vec模型,假设我使用的是googl…

dask_xgboost.predict 可以工作但无法显示 – 数据必须是一维的

我试图使用 XGBoost 创建模型。 看起来我成功地…

ML Tuning – Cross Validation in Spark

我在https://spark.apache.org/…

如何在React JS中使用fetch从REST API获取预测

我正在开发一个应用程序,其中Flask REST AP…

如何分析ML.NET中多类分类预测得分数组?

我在ML.NET中创建了一个多类分类项目。该项目可以对…

发表回复

您的邮箱地址不会被公开。 必填项已用 * 标注