我们都知道常见的方法是定义一个包含降维技术的管道,然后是一个用于训练和测试的模型。接着我们可以应用GridSearchCV进行超参数调优。
grid = GridSearchCV(Pipeline([ ('reduce_dim', PCA()), ('classify', RandomForestClassifier(n_jobs = -1)) ]),param_grid=[ { 'reduce_dim__n_components': range(0.7,0.9,0.1), 'classify__n_estimators': range(10,50,5), 'classify__max_features': ['auto', 0.2], 'classify__min_samples_leaf': [40,50,60], 'classify__criterion': ['gini', 'entropy'] }],cv=5, scoring='f1')grid.fit(X,y)
我能理解上述代码。
今天我在查看文档时,发现了一段有点奇怪的代码。
pipe = Pipeline([ # the reduce_dim stage is populated by the param_grid ('reduce_dim', 'passthrough'), # 这是如何工作的? ('classify', LinearSVC(dual=False, max_iter=10000))])N_FEATURES_OPTIONS = [2, 4, 8]C_OPTIONS = [1, 10, 100, 1000]param_grid = [ { 'reduce_dim': [PCA(iterated_power=7), NMF()], 'reduce_dim__n_components': N_FEATURES_OPTIONS, ### 没有使用PCA..? 'classify__C': C_OPTIONS }, { 'reduce_dim': [SelectKBest(chi2)], 'reduce_dim__k': N_FEATURES_OPTIONS, 'classify__C': C_OPTIONS },]reducer_labels = ['PCA', 'NMF', 'KBest(chi2)']grid = GridSearchCV(pipe, n_jobs=1, param_grid=param_grid)X, y = load_digits(return_X_y=True)grid.fit(X, y)
-
首先,在定义管道时,它使用了一个字符串’passthrough’而不是一个对象。
('reduce_dim', 'passthrough'), ```
- 然后,在为网格搜索定义不同的降维技术时,它使用了一种不同的策略。
[PCA(iterated_power=7), NMF()]
这是如何工作的?'reduce_dim': [PCA(iterated_power=7), NMF()], 'reduce_dim__n_components': N_FEATURES_OPTIONS, # 这里
请有人帮我解释一下这段代码。
已解决 – 一句话来说,顺序是 ['PCA', 'NMF', 'KBest(chi2)']
感谢 – seralouk(见下面的回答)
回答:
据我所知,这是等价的。
在文档中,你有以下内容:
pipe = Pipeline([ # the reduce_dim stage is populated by the param_grid ('reduce_dim', 'passthrough'), ('classify', LinearSVC(dual=False, max_iter=10000))])N_FEATURES_OPTIONS = [2, 4, 8]C_OPTIONS = [1, 10, 100, 1000]param_grid = [ { 'reduce_dim': [PCA(iterated_power=7), NMF()], 'reduce_dim__n_components': N_FEATURES_OPTIONS, 'classify__C': C_OPTIONS }, { 'reduce_dim': [SelectKBest(chi2)], 'reduce_dim__k': N_FEATURES_OPTIONS, 'classify__C': C_OPTIONS },]
最初我们有 ('reduce_dim', 'passthrough'),
然后是 'reduce_dim': [PCA(iterated_power=7), NMF()]
PCA的定义是在第二行完成的。
你可以选择以下替代定义方式:
pipe = Pipeline([ # the reduce_dim stage is populated by the param_grid ('reduce_dim', PCA(iterated_power=7)), ('classify', LinearSVC(dual=False, max_iter=10000))])N_FEATURES_OPTIONS = [2, 4, 8]C_OPTIONS = [1, 10, 100, 1000]param_grid = [ { 'reduce_dim__n_components': N_FEATURES_OPTIONS, 'classify__C': C_OPTIONS }, { 'reduce_dim': [SelectKBest(chi2)], 'reduce_dim__k': N_FEATURES_OPTIONS, 'classify__C': C_OPTIONS },]