我有一个名为data
的DataFrame,其前几行如下所示:
status datetime country amount city
601766 received 1.453916e+09 France 4.5 Paris
669244 received 1.454109e+09 Italy 6.9 Naples
我想根据datetime, country, amount
和city
来预测status
。
由于status, country, city
是字符串,我对它们进行了独热编码:
one_hot = pd.get_dummies(data['country'])
data = data.drop(item, axis=1) # 删除已进行独热编码的列
data = data.join(one_hot)
然后我创建了一个简单的LinearRegression模型并拟合我的数据:
y_data = data['status']
classifier = LinearRegression(n_jobs = -1)
X_train, X_test, y_train, y_test = train_test_split(data, y_data, test_size=0.2)
columns = X_train.columns.tolist()
classifier.fit(X_train[columns], y_train)
但我遇到了以下错误:
无法将字符串转换为浮点数: ‘received’
我感觉这里遗漏了一些东西,想得到一些关于如何继续的建议。感谢您阅读到这里!
回答:
请考虑以下方法:
首先,让我们对所有非数字列进行独热编码:
In [220]: from sklearn.preprocessing import LabelEncoder
In [221]: x = df.select_dtypes(exclude=['number']) \
.apply(LabelEncoder().fit_transform) \
.join(df.select_dtypes(include=['number']))
In [228]: x
Out[228]: status country city datetime amount
601766 0 0 1 1.453916e+09 4.5
669244 0 1 0 1.454109e+09 6.9
现在我们可以使用LinearRegression
分类器:
In [230]: classifier.fit(x.drop('status',1), x['status'])
Out[230]: LinearRegression(copy_X=True, fit_intercept=True, n_jobs=1, normalize=False)