当前不支持 session_kwargs 中的某些键: %s’, dict_keys([‘metrices’]))

我正在尝试制作一个基本的图像分类项目,该项目可以区分任意两个或多个类别。我已经编写了以下代码,并遇到了标题中提到的错误。我该如何解决这个错误?以下是我的代码

from keras.preprocessing import imagefrom keras.preprocessing.image import ImageDataGeneratorfrom keras.models import Sequentialfrom keras.layers import Conv2D,MaxPooling2Dfrom keras.layers import Activation,Dropout,Flatten,Densefrom keras import backend as kimport numpy as npimg_width,img_height = 64,64train_data_dir = 'dataset/training_set'validation_data_dir = 'dataset/test_set'nb_train_samples = 1000nb_validation_samples = 100epochs = 50batch_size = 20if k.image_data_format() == 'channel-first':   input_shape = (3,img_width,img_height)else:   input_shape = (img_width,img_height,3)train_datagen = ImageDataGenerator(rescale = 1./255,                                   shear_range = 0.2,                                   zoom_range = 0.2,                                   horizontal_flip = True)test_datagen = ImageDataGenerator(rescale = 1./255)train_generator = train_datagen.flow_from_directory(                                      train_data_dir,                                      target_size=(img_width,img_height),                                      batch_size = batch_size,                                      class_mode = 'binary')validation_generator=test_datagen.flow_from_directory(                                    validation_data_dir,                                    target_size = (img_width,img_height),                                    batch_size = batch_size,                                    class_mode = 'binary')model = Sequential()model.add(Conv2D(32,(3,3),input_shape = input_shape))model.add(Activation('relu'))model.add(MaxPooling2D(pool_size = (2,2)))model.summary()model.add(Conv2D(32,(3,3)))model.add(Activation('relu'))model.add(MaxPooling2D(pool_size = (2,2)))#model.add(Conv2D(64,(3,3)))#model.add(Activation('relu'))#model.add(MaxPooling2D(pool_size = (2,2)))model.summary()model.add(Flatten())model.add(Dense(units = 128, activation = "relu"))model.add(Dense(units = 1, activation = "sigmoid"))model.add(Dropout(0.5))optimizer = keras.optimizers.sgd(lr = 0.1)model.compile(loss='binary_crossentropy',              optimizer = optimizer,              metrices = ['accuracy'])model.fit_generator(train_generator,                steps_per_epoch = nb_train_samples // batch_size,                epochs = epochs,                validation_data = validation_generator,                validation_steps = nb_validation_samples // batch_size)

除了最后一段代码外,每行都运行正常。在运行最后一段代码时,我遇到了以下错误

(‘Some keys in session_kwargs are not supported at this time: %s’, dict_keys([‘metrices’]))


回答:

您是否应该使用 metrics 而不是 metrices

Related Posts

使用LSTM在Python中预测未来值

这段代码可以预测指定股票的当前日期之前的值,但不能预测…

如何在gensim的word2vec模型中查找双词组的相似性

我有一个word2vec模型,假设我使用的是googl…

dask_xgboost.predict 可以工作但无法显示 – 数据必须是一维的

我试图使用 XGBoost 创建模型。 看起来我成功地…

ML Tuning – Cross Validation in Spark

我在https://spark.apache.org/…

如何在React JS中使用fetch从REST API获取预测

我正在开发一个应用程序,其中Flask REST AP…

如何分析ML.NET中多类分类预测得分数组?

我在ML.NET中创建了一个多类分类项目。该项目可以对…

发表回复

您的邮箱地址不会被公开。 必填项已用 * 标注