我试图创建一个最简单的感知器,只有一个神经元(神经元接受两个输入值,并将它们与权重相乘,然后加上偏置,最后用 sigmoid 函数 (1 / (1 + Math.exp(-x))) 激活它们的和)。通过反向传播来训练它(通过从我获得的输出中减去预期值来获得误差,找到梯度和权重增量,我们用它乘以权重和输入值之间的差异),但在第一次迭代后,我的权重变得非常接近0,并开始产生 sigmoid(0),即0.5(它总是产生从0.48到0.52或接近的数值)。
class Neuron {constructor(){ this.inputs = [1,1]; this.inputWeights = [(Math.random()*2)-1,(Math.random()*2)-1]; this.bias = 0.1; this.activate = () => { if(this.inputs.length !== this.inputWeights.length)return "Wrong input length"; let sum = 0; for(var n = 0; n < this.inputs.length;n++){ sum = sum + (this.inputs[n]*this.inputWeights[n]); } sum = sum + this.bias; //return sigmoid activated value let activated_output = (1 / (1 + Math.exp(-sum))); return activated_output; }; this.error = (predicted,desired) => { let error = predicted - desired; let gradient = predicted * (1-predicted); let weights_delta = error * gradient; return weights_delta; }; this.changeWeights = (weights_delta) => { let info = this.inputWeights[0]; for(var n = 0; n < this.inputWeights.length; n++){ this.inputWeights[n] = (this.inputWeights[n] - this.inputs[n]) * weights_delta * learning_rate; } return "first weight changed from " + info + " to " + this.inputWeights[0]; }}}var testNeuron = new Neuron();var learning_rate = 0.05;var dataset = [{ inputs: [1,0], outputs: [1] },{ inputs: [0,1], outputs: [0] }, { inputs: [0.5,0.1], outputs: [1] },{ inputs: [0.1,0.9], outputs: [0] }];//trainvar train = (iterations, data) => { for(var i = 0; i < iterations; i++){ for(var n = 0; n < data.length; n++){ testNeuron.inputs = data[n].inputs; console.log(testNeuron.changeWeights(testNeuron.error(testNeuron.activate() , data[n].outputs[0]))); } }}train(10,dataset);
这是所有代码,我尝试过有和没有偏置的情况,但我觉得我的数学肯定有问题,但我找不到问题出在哪里,因为我是个新手…请帮助我,先生们
回答:
最大的错误是我没有使用任何偏置输入,也没有为它调整权重。如果我们不使用偏置,那么像0,0这样的简单输入将总是返回0,并且没有办法通过调整权重来改变输出。
其次,如果我们看简单的感知器,我们应该使用阈值函数而不是sigmoid函数(虽然sigmoid函数是可能的,但在我看来在这个例子中更慢)。阈值函数是一个简单的函数,如果输出为负则返回0,如果为正则返回1。我重新编写并运行的代码如下所示,增加训练迭代次数会像预期的那样减少错误,谢谢你们
class Perceptron{constructor(){ //bias , input1, input2 this.inputs = [1,0,0]; this.inputWeights = [(Math.random()*2)-1,(Math.random()*2)-1,(Math.random()*2)-1]; this.output = 0; this.desiredOutput = 0; }//perceptron methods activate = () => { let sum = 0; for(var n = 0; n < this.inputs.length; n++){ sum += this.inputs[n] * this.inputWeights[n]; }; this.output = sum < 0 ? 0 : 1; this.desiredOutput == this.output ? console.log("Correct answer") : console.log("Incorrect answer"); }; propagate = () => { let error = this.desiredOutput - this.output; for(var m = 0; m < this.inputs.length; m++){ let delta = error * this.inputs[m]; this.inputWeights[m] = this.inputWeights[m] + (delta * learningRate); } };}let learningRate = 0.1;var train = (iterations) => { for(var x = 0; x < iterations; x++){ for(var y = 0; y < dataset.length; y++){ perception.inputs = [1,dataset[y][0],dataset[y][1]]; perception.desiredOutput = dataset[y][2]; perception.activate(); perception.propagate(); } }} var perception = new Perceptron();//[input1 , input2 , desiredOutput] var dataset = [ [0,0,1], [1,1,0], [0.1,0.3,1], [1.5,1.8,0]]; train(100);