我正在开发一个图像分类器。我提取了pca特征。我的样本代码是
for file in listing1: img = cv2.imread(path1 + file) res=cv2.resize(img,(250,250)) gray_image = cv2.cvtColor(res, cv2.COLOR_BGR2GRAY) xarr=np.squeeze(np.array(gray_image).astype(np.float32)) m,v=cv2.PCACompute(xarr) training_set.append(v) training_labels.append(1)trainData=np.float32(np.float32(xi) for xi in training_set)responses=np.float32(training_labels)svm = cv2.SVM()svm.train(trainData,responses, params=svm_params)svm.save('svm_data.dat')
但是在训练过程中我遇到了这个错误:
OpenCV 错误:错误参数(训练数据必须是浮点矩阵)在 cvCheckTrainData,文件 ..\..\..\..\opencv\modules\ml\src\inner_functions.cpp,第857行
回答:
解决方案 这对我有用你需要将其转换为 np 数组,并需要将该数组展平。
for file in listing1: img = cv2.imread(path1 + file) res=cv2.resize(img,(250,250)) gray_image = cv2.cvtColor(res, cv2.COLOR_BGR2GRAY) xarr=np.squeeze(np.array(gray_image).astype(np.float32)) m,v=cv2.PCACompute(xarr) arr= np.array(v) flat_arr= arr.ravel() training_set.append(flat_arr) training_labels.append(1)
训练
trainData=np.float32(training_set)responses=np.float32(training_labels)svm = cv2.SVM()svm.train(trainData,responses, params=svm_params)svm.save('svm_data.dat')