有没有一个用于CPU输入的torch._C._nn.nll_loss函数?我没有足够的GPU内存来运行我的函数,所以我想尝试在CPU上运行所有内容。这是我的具体错误(请查看anaconda文件)
Traceback (most recent call last): File "plot_parametric_pytorch.py", line 395, in <module> val_result = validate(val_loader, model, criterion, 0) File "plot_parametric_pytorch.py", line 228, in validate training=False, optimizer=None) File "plot_parametric_pytorch.py", line 169, in forward loss = criterion(output, target_var) File "/home/klee/anaconda3/envs/sharpenv/lib/python3.7/site-packages/torch/nn/modules/module.py", line 550, in __call__ result = self.forward(*input, **kwargs) File "/home/klee/anaconda3/envs/sharpenv/lib/python3.7/site-packages/torch/nn/modules/loss.py", line 932, in forward ignore_index=self.ignore_index, reduction=self.reduction) File "/home/klee/anaconda3/envs/sharpenv/lib/python3.7/site-packages/torch/nn/functional.py", line 2317, in cross_entropy return nll_loss(log_softmax(input, 1), target, weight, None, ignore_index, None, reduction) File "/home/klee/anaconda3/envs/sharpenv/lib/python3.7/site-packages/torch/nn/functional.py", line 2115, in nll_loss ret = torch._C._nn.nll_loss(input, target, weight, _Reduction.get_enum(reduction), ignore_index)RuntimeError: Expected object of device type cuda but got device type cpu for argument #1 'self' in call to _thnn_nll_loss_forward
回答:
nll_loss
可以同时在CPU和GPU上运行,但输入和目标需要在同一设备上。您的输入和目标位于不同设备上,第一个(output
)在CPU上,第二个(target_var
)在GPU上。
您需要将target_var
放到CPU上。
loss = criterion(output, target_var.cpu())