true = [1,0,0,1]predict = [1,1,1,1]cf = sk.metrics.confusion_matrix(true,predict)print cf
array
([[0, 2],
[0, 2]])
tp = cf[0][0]fn = cf[0][1]fp = cf[1][0]tn = cf[1][1]sensitivity= tp/(tp+fn)print(sensitivity)
0.0
print(sk.metrics.recall_score(true, predict))
1.0
根据Scikit文档中的”Recall_Score“定义,两者应该是一致的。有人能详细解释一下吗?
回答:
混淆矩阵的标签必须按以下方式更新:
tn = cf[0][0]fp = cf[0][1]fn = cf[1][0]tp = cf[1][1]sensitivity= tp/(tp+fn)print(sensitivity)1.0