从 Keras 迁移到 Tensorflow:”GlobalAveragePooling2D()” 和 “std bad:alloc”

我对tensorflow还比较新手,正在尝试将这个keras cnn迁移到tensorflow上。

 inputs = Input(shape=(1, BANDS, 500))        x = Conv2D(100, kernel_size=(BANDS, 50), kernel_initializer='he_uniform')(inputs)        x = BatchNormalization(axis=1)(x)        x = LeakyReLU()(x)        x = Dropout(0.25)(x)        x = Conv2D(100, kernel_size=(1, 1), kernel_initializer='he_uniform')(x)        x = BatchNormalization(axis=1)(x)        x = LeakyReLU()(x)        x = Dropout(0.25)(x)        x = Conv2D(15, kernel_size=(1, 1), kernel_initializer='he_uniform')(x)        x = Lambda(softmax, arguments={'axis': 1}, name='softmax')(x)        x = GlobalAveragePooling2D()(x)        model = Model(inputs=inputs, outputs=x)        model.compile(loss='categorical_crossentropy', optimizer=keras.optimizers.Adam(lr=0.001),                      metrics=['accuracy'])

这是TensorFlow的代码

def sai_net( ):    network = input_data(shape=[None, NUM_OF_BANDS, 500, 1 ], name='features')    network = conv_2d(network, 100 , [NUM_OF_BANDS,50 ], activation='relu')    network = local_response_normalization(network)    network = dropout(network, 0.25)    network = conv_2d(network, 100 , [1,1], activation='relu')    network = local_response_normalization(network)    network = dropout(network, 0.25)    network = conv_2d(network, 15, [1,1], activation='relu')    network = fully_connected(network, 15, activation='softmax')    network = regression(network, optimizer='momentum', loss='categorical_crossentropy',                          learning_rate=LEARNING_RATE, name='labels')    model = tflearn.DNN(network, checkpoint_path=MODEL_PATH + MODEL_NAME,                         tensorboard_dir=TRAIN_PATH, tensorboard_verbose=3, max_checkpoints=1)    return model

首先,我在如何在tensorflow中使用GlobalAveragePooling时遇到了麻烦,当我尝试使用全连接层时,它会出现bad:alloc错误,可能是因为内存过大所致。

基本上,输入是一个Bands*500的矩阵,在以下情况下bands == 200,输出是15个场景标签中的一个。有三个问题:

1) 如何在这个网络中应用GlobalAveragePooling层

2) std:bad alloc是否是由于全连接层引起的(8GB的内存,256GB的SSD)

3) 如何在这个网络中在激活之前应用归一化


回答:

由于没有人回答这个问题,所以我自己解决了。bad:alloc确实是由于内存开销过大引起的。使用tflearn库在tensorflow中实现这个模型的正确网络实现如下:

def sai_net( ):    network = input_data(shape=[None, NUM_OF_BANDS, 500, 1 ], name='features')    print(network.shape)     network = conv_2d(network, 100 , [NUM_OF_BANDS,50 ] , strides = [NUM_OF_BANDS,1] )    print(network.shape)     network = tflearn.layers.batch_normalization(network)    print(network.shape )     network = tflearn.activations.relu(network)    print(network.shape )     network = dropout(network, 0.25)    print(network.shape )     network = conv_2d(network, 100 , [1,1])    print(network.shape )     network = tflearn.layers.batch_normalization(network)    network = tflearn.activations.relu(network)    network = dropout(network, 0.25)    network = conv_2d(network, 15, [1,1], activation='softmax')    print(network.shape )     network = tflearn.layers.conv.global_avg_pool (network, name='GlobalAvgPool')    print(network.shape)    network = regression(network, optimizer='momentum', loss='categorical_crossentropy',                          learning_rate=LEARNING_RATE, name='labels')    model = tflearn.DNN( network,tensorboard_dir=TRAIN_PATH, tensorboard_verbose=3 )    return model

Related Posts

使用LSTM在Python中预测未来值

这段代码可以预测指定股票的当前日期之前的值,但不能预测…

如何在gensim的word2vec模型中查找双词组的相似性

我有一个word2vec模型,假设我使用的是googl…

dask_xgboost.predict 可以工作但无法显示 – 数据必须是一维的

我试图使用 XGBoost 创建模型。 看起来我成功地…

ML Tuning – Cross Validation in Spark

我在https://spark.apache.org/…

如何在React JS中使用fetch从REST API获取预测

我正在开发一个应用程序,其中Flask REST AP…

如何分析ML.NET中多类分类预测得分数组?

我在ML.NET中创建了一个多类分类项目。该项目可以对…

发表回复

您的邮箱地址不会被公开。 必填项已用 * 标注