我使用以下代码(感谢这里)来运行CNN以训练MNIST图像:
from __future__ import print_functionimport kerasfrom keras.datasets import mnistfrom keras.models import Sequentialfrom keras.layers import Dense, Dropout, Flattenfrom keras.layers import Conv2D, MaxPooling2Dfrom keras import backend as Kbatch_size = 128num_classes = 10epochs = 1# input image dimensionsimg_rows, img_cols = 28, 28# the data, split between train and test sets(x_train, y_train), (x_test, y_test) = mnist.load_data()if K.image_data_format() == 'channels_first': x_train = x_train.reshape(x_train.shape[0], 1, img_rows, img_cols) x_test = x_test.reshape(x_test.shape[0], 1, img_rows, img_cols) input_shape = (1, img_rows, img_cols)else: x_train = x_train.reshape(x_train.shape[0], img_rows, img_cols, 1) x_test = x_test.reshape(x_test.shape[0], img_rows, img_cols, 1) input_shape = (img_rows, img_cols, 1)x_train = x_train.astype('float32')x_test = x_test.astype('float32')x_train /= 255x_test /= 255print('x_train shape:', x_train.shape)print(x_train.shape[0], 'train samples')print(x_test.shape[0], 'test samples')# convert class vectors to binary class matricesy_train = keras.utils.to_categorical(y_train, num_classes)y_test = keras.utils.to_categorical(y_test, num_classes)model = Sequential()model.add(Conv2D(32, kernel_size=(3, 3), activation='relu', input_shape=input_shape))model.add(Conv2D(64, (3, 3), activation='relu'))model.add(MaxPooling2D(pool_size=(2, 2)))model.add(Dropout(0.25))model.add(Flatten())model.add(Dense(128, activation='relu'))model.add(Dropout(0.5))model.add(Dense(num_classes, activation='softmax'))model.compile(loss=keras.losses.categorical_crossentropy, optimizer=keras.optimizers.Adadelta(), metrics=['accuracy'])model.fit(x_train, y_train, batch_size=batch_size, epochs=epochs, verbose=1, validation_data=(x_test, y_test))print(model.save_weights('file.txt')) # <<<<<----score = model.evaluate(x_test, y_test, verbose=0)print('Test loss:', score[0])print('Test accuracy:', score[1])
我的目标是使用CNN模型从MNIST中提取特征到一个数据集中,以便我可以将其用作另一个分类器的输入。在这个例子中,我不关心分类操作,因为我只需要训练图像的特征。我找到的唯一方法是save_weights
,如下所示:
print(model.save_weights('file.txt'))
如何从Keras模型中提取特征到数据集?
回答:
在训练或加载已存在的训练模型后,你可以创建另一个模型:
extract = Model(model.inputs, model.layers[-3].output) # Dense(128,...)features = extract.predict(data)
然后使用.predict
方法返回特定层的向量,在这种情况下,每张图像将变成(128,),这是Dense(128, …)层的输出。
你也可以使用函数式API来共同训练这些网络,并使用2个输出。按照指南,你会发现你可以将模型链接在一起,并且可以有多个输出,每个输出可能有单独的损失。这将允许你的模型学习对分类MNIST图像和你的任务都很有用的共享特征。