CNN Pytorch 仅支持空间目标批处理错误

我已经设计了以下模型,用于对MNIST时尚数据进行分类。

class CNN(nn.Module):    def __init__(self, **kwargs):      super().__init__()        self.conv1    = nn.Conv2d(784, 64, 2, 1, padding=5)      self.maxpool  = nn.MaxPool2d(kernel_size=2, stride=2)      self.conv2    = nn.Conv2d(64, 128, 2, 2, padding = 0)      self.conv2_bn = nn.BatchNorm2d(128)      self.relu     = nn.ReLU()      self.dense    = nn.Linear(1, 128)      self.softmax  = nn.Softmax()    def forward(self, x): # you can add any additional parameters you want              x = self.conv1(x)        x = F.max_pool2d(F.relu(x), kernel_size=2)        x = self.conv2(x)        x = self.conv2_bn(x)        x = F.max_pool2d(F.relu(x), kernel_size=2)        print(x.shape)        x = self.dense(x)        x = F.relu(x)        return F.log_softmax(x) 

这是我运行代码的地方:

for epoch in range(max_epoch):    print('EPOCH='+str(epoch))    correct = 0    total = 0           running_loss = 0    for data, label in tzip(TRAX, TRAY):        #train = data.view(64,1,2,2)        DAAA = data.view(1,784,1,1)        #zeroing the parameter        optimizer.zero_grad()        label = torch.tensor([label]).type(torch.LongTensor)        #forwards prop        outputs = model2(DAAA)        loss = criterion(outputs, label)        loss.backward()        optimizer.step()        running_loss += loss.item()        '========================================'        _, predicted = torch.max(outputs.data, 1)        total += label.size(0)        correct += (predicted == label).sum().item()        '========================================'            print('\n')    print('Accuracy of the network on the 10000 test images: %d %%' % (    100 * correct / total))    print('\n')    print(str(epoch)+'loss= '+str(running_loss))     lossjournal.append(running_loss)    accjournal.append(100 * correct / total)print('Finished Training')
<ipython-input-378-27ce013b2c10> in <module>     55         #forwards prop     56         outputs = model2(DAAA)---> 57         loss = criterion(outputs, label)     58         loss.backward()     59         optimizer.step()/Library/Frameworks/Python.framework/Versions/3.9/lib/python3.9/site-packages/torch/nn/modules/module.py in _call_impl(self, *input, **kwargs)    887             result = self._slow_forward(*input, **kwargs)    888         else:--> 889             result = self.forward(*input, **kwargs)    890         for hook in itertools.chain(    891                 _global_forward_hooks.values(),/Library/Frameworks/Python.framework/Versions/3.9/lib/python3.9/site-packages/torch/nn/modules/loss.py in forward(self, input, target)   1045     def forward(self, input: Tensor, target: Tensor) -> Tensor:   1046         assert self.weight is None or isinstance(self.weight, Tensor)-> 1047         return F.cross_entropy(input, target, weight=self.weight,   1048                                ignore_index=self.ignore_index, reduction=self.reduction)   1049 /Library/Frameworks/Python.framework/Versions/3.9/lib/python3.9/site-packages/torch/nn/functional.py in cross_entropy(input, target, weight, size_average, ignore_index, reduce, reduction)   2691     if size_average is not None or reduce is not None:   2692         reduction = _Reduction.legacy_get_string(size_average, reduce)-> 2693     return nll_loss(log_softmax(input, 1), target, weight, None, ignore_index, None, reduction)   2694    2695 /Library/Frameworks/Python.framework/Versions/3.9/lib/python3.9/site-packages/torch/nn/functional.py in nll_loss(input, target, weight, size_average, ignore_index, reduce, reduction)   2388         ret = torch._C._nn.nll_loss(input, target, weight, _Reduction.get_enum(reduction), ignore_index)   2389     elif dim == 4:-> 2390         ret = torch._C._nn.nll_loss2d(input, target, weight, _Reduction.get_enum(reduction), ignore_index)   2391     else:   2392         # dim == 3 or dim > 4RuntimeError: only batches of spatial targets supported (3D tensors) but got targets of dimension: 1

当我运行我的模型时,我得到了这个错误,但我不知道接下来该怎么办?我应该对这个模型进行哪些调整才能使其工作?我知道问题出在标准上,但这是因为模型的输出形状是[1, 128, 1, 128]吗?


回答:

MNIST有10个类别,因此你的输出应该为[batch_size, 10]的大小。将最后一个线性层更改为self.dense = nn.Linear(128,10)。然后,由于你的标签大小为[batch_size,1],你应该使用torch.nn.CrossEntropyLoss作为标准。

此外,你在训练过程中不需要包含最后的softmax层,因为上述损失函数在计算时会执行softmax操作。你可以仅在推理时使用softmaxargmax

Related Posts

使用LSTM在Python中预测未来值

这段代码可以预测指定股票的当前日期之前的值,但不能预测…

如何在gensim的word2vec模型中查找双词组的相似性

我有一个word2vec模型,假设我使用的是googl…

dask_xgboost.predict 可以工作但无法显示 – 数据必须是一维的

我试图使用 XGBoost 创建模型。 看起来我成功地…

ML Tuning – Cross Validation in Spark

我在https://spark.apache.org/…

如何在React JS中使用fetch从REST API获取预测

我正在开发一个应用程序,其中Flask REST AP…

如何分析ML.NET中多类分类预测得分数组?

我在ML.NET中创建了一个多类分类项目。该项目可以对…

发表回复

您的邮箱地址不会被公开。 必填项已用 * 标注