我正在构建一个CNN模型来对图像进行分类,但我猜测我的模型未能学习,因为准确率和损失函数的值一直保持不变。请看下面的代码:
构建图像训练、测试和验证数据集
import pandas as pdfrom keras_preprocessing.image import ImageDataGeneratorimport numpy as np#从三个.txt文件中创建三个数据集。trainingfile = pd.read_table('data/training.txt', delim_whitespace=True, names=('class', 'image'))testingfile = pd.read_table('data/testing.txt', delim_whitespace=True, names=('class', 'image'))validationfile = pd.read_table('data/validation.txt', delim_whitespace=True, names=('class', 'image'))#改变目标变量类型trainingfile = trainingfile.replace([0, 1, 2], ['class0', 'class1', 'class2'])testingfile = testingfile.replace([0, 1, 2], ['class0', 'class1', 'class2'])validationfile = validationfile.replace([0, 1, 2], ['class0', 'class1', 'class2'])#数据增强datagen=ImageDataGenerator()train_datagen = ImageDataGenerator( #我们应用少量旋转,因为通常照片是居中的 rotation_range=5, zoom_range=0.1)#最终包含图像的数据集train=train_datagen.flow_from_dataframe(dataframe=trainingfile, directory="data/", x_col="image", y_col="class", class_mode="categorical", target_size=(256,256),color_mode='rgb',batch_size=32)test=datagen.flow_from_dataframe(dataframe=testingfile, directory="data/", x_col="image", y_col="class", class_mode="categorical", target_size=(256,256),color_mode='rgb',batch_size=32)#对验证数据集不进行数据增强。validation=datagen.flow_from_dataframe(dataframe=validationfile, directory="data/", x_col="image", y_col="class", class_mode="categorical", target_size=(256,256),color_mode='rgb', batch_size=32)
CNN模型
from keras.models import Sequentialfrom keras.layers import Dense, Conv2D, Flatten, Activation, Dropout, MaxPooling2D, BatchNormalizationfrom keras.constraints import maxnorm#创建模型model = Sequential()#第一卷积块model.add(Conv2D(32, kernel_size = (3, 3), activation='relu', input_shape=(256, 256,3)))model.add(MaxPooling2D(pool_size=(2,2)))model.add(BatchNormalization())#第二卷积块model.add(Conv2D(64, kernel_size=(3,3), activation='relu'))model.add(MaxPooling2D(pool_size=(2,2)))model.add(BatchNormalization())#第三卷积块model.add(Conv2D(64, kernel_size=(3,3), activation='relu'))model.add(MaxPooling2D(pool_size=(2,2)))model.add(BatchNormalization())#第四卷积块model.add(Conv2D(96, kernel_size=(3,3), activation='relu'))model.add(MaxPooling2D(pool_size=(2,2)))model.add(BatchNormalization())#第五卷积块model.add(Conv2D(32, kernel_size=(3,3), activation='relu'))model.add(MaxPooling2D(pool_size=(2,2)))model.add(BatchNormalization())#Dropoutmodel.add(Dropout(0.2))model.add(Flatten())model.add(Dense(128, activation='relu'))#model.add(Dropout(0.3))model.add(Dense(3, activation = 'softmax'))from keras import regularizers, optimizersfrom keras.optimizers import RMSpropfrom keras.callbacks import EarlyStopping# 编译模型model.compile(optimizer='adam',loss="categorical_crossentropy",metrics=["accuracy"])# 提前停止es = EarlyStopping(monitor='val_loss', mode='min', verbose=1,patience=10)
训练模型
h=model.fit_generator(generator=train, validation_data=validation, epochs=50, callbacks=[es])
结果
这是我第一次使用fit_generator,可能我没有正确使用它?
回答:
从结果图中可以看出,你只训练了一个epoch。这可能是因为提前停止的设置过于严格。尝试将patience
设置为3来调整EarlyStopping回调。
es = EarlyStopping(monitor='val_loss', mode='min', verbose=1, patience=3)
编辑
过拟合示例:
查看这篇文章,了解更多关于如何处理过拟合的信息。