Chainer如何保存和加载DQN模型

我正在学习深度强化学习框架Chainer。

我按照一个教程操作,得到了以下代码:

def train_dddqn(env):    class Q_Network(chainer.Chain):        def __init__(self, input_size, hidden_size, output_size):            super(Q_Network, self).__init__(                fc1=L.Linear(input_size, hidden_size),                fc2=L.Linear(hidden_size, hidden_size),                fc3=L.Linear(hidden_size, hidden_size // 2),                fc4=L.Linear(hidden_size, hidden_size // 2),                state_value=L.Linear(hidden_size // 2, 1),                advantage_value=L.Linear(hidden_size // 2, output_size)            )            self.input_size = input_size            self.hidden_size = hidden_size            self.output_size = output_size        def __call__(self, x):            h = F.relu(self.fc1(x))            h = F.relu(self.fc2(h))            hs = F.relu(self.fc3(h))            ha = F.relu(self.fc4(h))            state_value = self.state_value(hs)            advantage_value = self.advantage_value(ha)            advantage_mean = (F.sum(advantage_value, axis=1) / float(self.output_size)).reshape(-1, 1)            q_value = F.concat([state_value for _ in range(self.output_size)], axis=1) + (                    advantage_value - F.concat([advantage_mean for _ in range(self.output_size)], axis=1))            return q_value        def reset(self):            self.cleargrads()    Q = Q_Network(input_size=env.history_t + 1, hidden_size=100, output_size=3)    Q_ast = copy.deepcopy(Q)    optimizer = chainer.optimizers.Adam()    optimizer.setup(Q)    epoch_num = 50    step_max = len(env.data) - 1    memory_size = 200    batch_size = 50    epsilon = 1.0    epsilon_decrease = 1e-3    epsilon_min = 0.1    start_reduce_epsilon = 200    train_freq = 10    update_q_freq = 20    gamma = 0.97    show_log_freq = 5    memory = []    total_step = 0    total_rewards = []    total_losses = []    start = time.time()    for epoch in range(epoch_num):        pobs = env.reset()        step = 0        done = False        total_reward = 0        total_loss = 0        while not done and step < step_max:            # select act            pact = np.random.randint(3)            if np.random.rand() > epsilon:                pact = Q(np.array(pobs, dtype=np.float32).reshape(1, -1))                pact = np.argmax(pact.data)            # act            obs, reward, done = env.step(pact)            # add memory            memory.append((pobs, pact, reward, obs, done))            if len(memory) > memory_size:                memory.pop(0)            # train or update q            if len(memory) == memory_size:                if total_step % train_freq == 0:                    shuffled_memory = np.random.permutation(memory)                    memory_idx = range(len(shuffled_memory))                    for i in memory_idx[::batch_size]:                        batch = np.array(shuffled_memory[i:i + batch_size])                        b_pobs = np.array(batch[:, 0].tolist(), dtype=np.float32).reshape(batch_size, -1)                        b_pact = np.array(batch[:, 1].tolist(), dtype=np.int32)                        b_reward = np.array(batch[:, 2].tolist(), dtype=np.int32)                        b_obs = np.array(batch[:, 3].tolist(), dtype=np.float32).reshape(batch_size, -1)                        b_done = np.array(batch[:, 4].tolist(), dtype=np.bool)                        q = Q(b_pobs)                        indices = np.argmax(q.data, axis=1)                        maxqs = Q_ast(b_obs).data                        target = copy.deepcopy(q.data)                        for j in range(batch_size):                        Q.reset()                        loss = F.mean_squared_error(q, target)                        total_loss += loss.data                        loss.backward()                        optimizer.update()                if total_step % update_q_freq == 0:                    Q_ast = copy.deepcopy(Q)            # epsilon            if epsilon > epsilon_min and total_step > start_reduce_epsilon:                epsilon -= epsilon_decrease            # next step            total_reward += reward            pobs = obs            step += 1            total_step += 1        total_rewards.append(total_reward)        total_losses.append(total_loss)        if (epoch + 1) % show_log_freq == 0:            log_reward = sum(total_rewards[((epoch + 1) - show_log_freq):]) / show_log_freq            log_loss = sum(total_losses[((epoch + 1) - show_log_freq):]) / show_log_freq            elapsed_time = time.time() - start            print('\t'.join(map(str, [epoch + 1, epsilon, total_step, log_reward, log_loss, elapsed_time])))            start = time.time()    return Q, total_losses, total_rewardsQ, total_losses, total_rewards = train_dddqn(Environment1(train)) 

我的问题是如何保存和加载这个已经训练得很好的模型?我知道Keras有一些像model.save和load_model这样的函数。

那么,对于这个Chainer代码,我需要的具体代码是什么呢?


回答:

您可以使用serializer模块来保存/加载Chainer的模型参数(Chain类)。

from chainer import serializersQ = Q_Network(input_size=env.history_t + 1, hidden_size=100, output_size=3)Q_ast = Q_Network(input_size=env.history_t + 1, hidden_size=100, output_size=3)# --- 在这里训练Q... ---# 通过保存Q的参数并加载到Q_ast来复制Q的参数到Q_astserializers.save_npz('my.model', Q)serializers.load_npz('my.model', Q_ast)

有关详细信息,请参阅官方文档:

此外,您可以参考chainerrl,这是一个用于强化学习的Chainer库。

chainerrl有一个实用函数copy_param,用于从网络source_link复制参数到target_link

Related Posts

使用LSTM在Python中预测未来值

这段代码可以预测指定股票的当前日期之前的值,但不能预测…

如何在gensim的word2vec模型中查找双词组的相似性

我有一个word2vec模型,假设我使用的是googl…

dask_xgboost.predict 可以工作但无法显示 – 数据必须是一维的

我试图使用 XGBoost 创建模型。 看起来我成功地…

ML Tuning – Cross Validation in Spark

我在https://spark.apache.org/…

如何在React JS中使用fetch从REST API获取预测

我正在开发一个应用程序,其中Flask REST AP…

如何分析ML.NET中多类分类预测得分数组?

我在ML.NET中创建了一个多类分类项目。该项目可以对…

发表回复

您的邮箱地址不会被公开。 必填项已用 * 标注