查找卷积层和全连接层的数量

我从Kaggle复制了代码,但无法计算其中的层数。我正在开发一个图像分类模型。能有人解释一下吗?我尝试了大多数解决方案,但还是无法计算出卷积层和全连接层的数量。

model = Sequential()inputShape = (height, width, depth)chanDim = -1if K.image_data_format() == "channels_first":    inputShape = (depth, height, width)    chanDim = 1    model.add(Conv2D(32, (3, 3), padding="same",input_shape=inputShape))model.add(Activation("relu"))model.add(BatchNormalization(axis=chanDim))model.add(MaxPooling2D(pool_size=(3, 3)))model.add(Dropout(0.25))model.add(Conv2D(64, (3, 3), padding="same"))model.add(Activation("relu"))model.add(BatchNormalization(axis=chanDim))model.add(Conv2D(64, (3, 3), padding="same"))model.add(Activation("relu"))model.add(BatchNormalization(axis=chanDim))model.add(MaxPooling2D(pool_size=(2, 2)))model.add(Dropout(0.25))model.add(Conv2D(128, (3, 3), padding="same"))model.add(Activation("relu"))model.add(BatchNormalization(axis=chanDim))model.add(Conv2D(128, (3, 3), padding="same"))model.add(Activation("relu"))model.add(BatchNormalization(axis=chanDim))model.add(MaxPooling2D(pool_size=(2, 2)))model.add(Dropout(0.25))model.add(Flatten())model.add(Dense(1024))model.add(Activation("relu"))model.add(BatchNormalization())model.add(Dropout(0.5))model.add(Dense(15))model.add(Activation("softmax"))model.summary()

能有人解释一下吗?

Model: "sequential_2"_________________________________________________________________Layer (type)                 Output Shape              Param #   =================================================================conv2d_5 (Conv2D)            (None, 256, 256, 32)      896       _________________________________________________________________activation_6 (Activation)    (None, 256, 256, 32)      0         _________________________________________________________________batch_normalization_6 (Batch (None, 256, 256, 32)      128       _________________________________________________________________max_pooling2d_3 (MaxPooling2 (None, 85, 85, 32)        0         _________________________________________________________________dropout_4 (Dropout)          (None, 85, 85, 32)        0         _________________________________________________________________conv2d_6 (Conv2D)            (None, 85, 85, 64)        18496     _________________________________________________________________activation_7 (Activation)    (None, 85, 85, 64)        0         _________________________________________________________________batch_normalization_7 (Batch (None, 85, 85, 64)        256       _________________________________________________________________conv2d_7 (Conv2D)            (None, 85, 85, 64)        36928     _________________________________________________________________activation_8 (Activation)    (None, 85, 85, 64)        0         _________________________________________________________________batch_normalization_8 (Batch (None, 85, 85, 64)        256       _________________________________________________________________max_pooling2d_4 (MaxPooling2 (None, 42, 42, 64)        0         _________________________________________________________________dropout_5 (Dropout)          (None, 42, 42, 64)        0         _________________________________________________________________conv2d_8 (Conv2D)            (None, 42, 42, 128)       73856     _________________________________________________________________activation_9 (Activation)    (None, 42, 42, 128)       0         _________________________________________________________________batch_normalization_9 (Batch (None, 42, 42, 128)       512       _________________________________________________________________conv2d_9 (Conv2D)            (None, 42, 42, 128)       147584    _________________________________________________________________activation_10 (Activation)   (None, 42, 42, 128)       0         _________________________________________________________________batch_normalization_10 (Batc (None, 42, 42, 128)       512       _________________________________________________________________max_pooling2d_5 (MaxPooling2 (None, 21, 21, 128)       0         _________________________________________________________________dropout_6 (Dropout)          (None, 21, 21, 128)       0         _________________________________________________________________flatten_1 (Flatten)          (None, 56448)             0         _________________________________________________________________dense_1 (Dense)              (None, 1024)              57803776  _________________________________________________________________activation_11 (Activation)   (None, 1024)              0         _________________________________________________________________batch_normalization_11 (Batc (None, 1024)              4096      _________________________________________________________________dropout_7 (Dropout)          (None, 1024)              0         _________________________________________________________________dense_2 (Dense)              (None, 15)                15375     _________________________________________________________________activation_12 (Activation)   (None, 15)                0         =================================================================Total params: 58,102,671Trainable params: 58,099,791Non-trainable params: 2,880_________________________________________________________________ 

我无法计算卷积层和全连接层的数量。我也尝试了model.layers,输出是28。这是怎么回事?

我如何编程获取卷积层和全连接层的数量?


回答:

首先,层数为28的原因是FlattenBatchNormalizationDropoutActivationMaxPool2D都在model.layers中被计算在内了。

尽管如此,你可以使用isinstance来获取层的计数:

num_conv = 0num_dense = 0for layer in model.layers:    if isinstance(layer, Conv2D):        num_conv += 1    elif isinstance(layer, Dense):        num_dense += 1

Related Posts

使用LSTM在Python中预测未来值

这段代码可以预测指定股票的当前日期之前的值,但不能预测…

如何在gensim的word2vec模型中查找双词组的相似性

我有一个word2vec模型,假设我使用的是googl…

dask_xgboost.predict 可以工作但无法显示 – 数据必须是一维的

我试图使用 XGBoost 创建模型。 看起来我成功地…

ML Tuning – Cross Validation in Spark

我在https://spark.apache.org/…

如何在React JS中使用fetch从REST API获取预测

我正在开发一个应用程序,其中Flask REST AP…

如何分析ML.NET中多类分类预测得分数组?

我在ML.NET中创建了一个多类分类项目。该项目可以对…

发表回复

您的邮箱地址不会被公开。 必填项已用 * 标注