### Caffe 未知底层 blob

我在使用 Caffe 框架,并希望训练以下网络:

train2.prototxt

当我执行以下命令时:

caffe train –solver solver.prototxt

它抛出以下错误:

`F0802 14:31:54.506695 28038 insert_splits.cpp:29] Unknown bottom blob 'image' (layer 'conv1', bottom index 0)*** Check failure stack trace: ***@     0x7ff2941c3f9d  google::LogMessage::Fail()@     0x7ff2941c5e03  google::LogMessage::SendToLog()@     0x7ff2941c3b2b  google::LogMessage::Flush()@     0x7ff2941c67ee  google::LogMessageFatal::~LogMessageFatal()@     0x7ff2947cedbe  caffe::InsertSplits()@     0x7ff2948306de  caffe::Net<>::Init()@     0x7ff294833a81  caffe::Net<>::Net()@     0x7ff29480ce6a  caffe::Solver<>::InitTestNets()@     0x7ff29480ee85  caffe::Solver<>::Init()@     0x7ff29480f19a  caffe::Solver<>::Solver()@     0x7ff2947f4343  caffe::Creator_SGDSolver<>()@           0x40b1a0  (unknown)@           0x407373  (unknown)@     0x7ff292e40741  __libc_start_main@           0x407b79  (unknown)Abortado (`core' generado)

代码是(train2.prototxt):

name: "xxxxxx"layer {  name: "image"  type: "HDF5Data"  top: "image"  top: "label"  hdf5_data_param {    source: "h5a.train.h5.txt"    batch_size: 64  }  include {    phase: TRAIN  }}layer {  name: "conv1"  type: "Convolution"  bottom: "image"  top: "conv1"  param {    lr_mult: 1    decay_mult: 1  }  param {    lr_mult: 2    decay_mult: 0  }  convolution_param {    num_output: 96    kernel_size: 11    stride: 4    weight_filler {      type: "gaussian"      std: 0.01    }    bias_filler {      type: "constant"      value: 0    }  }}layer {  name: "norm1"  type: "LRN"  bottom: "conv1"  top: "norm1"  lrn_param {    local_size: 5    alpha: 0.0001    beta: 0.75  }}layer {  name: "pool1"  type: "Pooling"  bottom: "norm1"  top: "pool1"  pooling_param {    pool: MAX    kernel_size: 3    stride: 2  }}layer {  name: "norm2"  type: "LRN"  bottom: "pool1"  top: "norm2"  lrn_param {    local_size: 5    alpha: 0.0001    beta: 0.75  }}layer {  name: "conv3"  type: "Convolution"  bottom: "norm2"  top: "conv3"  param {    lr_mult: 1    decay_mult: 1  }  param {    lr_mult: 2    decay_mult: 0  }  convolution_param {    num_output: 384    pad: 1    kernel_size: 3    weight_filler {      type: "gaussian"      std: 0.01    }    bias_filler {      type: "constant"      value: 0    }  }}layer {  name: "pool2"  type: "Pooling"  bottom: "conv3"  top: "pool2"  pooling_param {    pool: MAX    kernel_size: 3    stride: 2  }}layer {  name: "improd3"  type: "InnerProduct"  bottom: "pool2"  top: "improd3"  param {    lr_mult: 1    decay_mult: 1  }  param {    lr_mult: 2    decay_mult: 0  }  inner_product_param {    num_output: 1000    weight_filler {      type: "gaussian"      std: 0.01    }    bias_filler {      type: "constant"      value: 0    }  }}layer {  name: "accuracy"  type: "Accuracy"  bottom: "improd3"  bottom: "label"  top: "accuracy"  include {    phase: TEST  }}layer {  name: "loss"  type: "SoftmaxWithLoss"  bottom: "improd3"  bottom: "label"  top: "loss"}

solver.prototxt 内容如下:

net: "train2.prototxt"test_iter: 100test_interval: 1000# lr for fine-tuning should be lower than when starting from scratchbase_lr: 0.001lr_policy: "step"gamma: 0.1# stepsize should also be lower, as we're closer to being donestepsize: 20000display: 20max_iter: 100000momentum: 0.9weight_decay: 0.0005snapshot: 10000snapshot_prefix: "caffe"solver_mode: CPU

我被这个问题困住了,无法开始网络训练。


回答:

这是因为,即使您尝试执行Train阶段,Test阶段也会用于验证。由于测试阶段没有输入数据层,conv1层无法找到输入 blob image。这是因为您在 solver 中定义了test_*参数,并且在 train2.prototxt 中的某些层中定义了phase: TEST。从 solver 和代表TEST阶段的层中删除上述参数将有助于您无障碍地运行训练。

Related Posts

使用LSTM在Python中预测未来值

这段代码可以预测指定股票的当前日期之前的值,但不能预测…

如何在gensim的word2vec模型中查找双词组的相似性

我有一个word2vec模型,假设我使用的是googl…

dask_xgboost.predict 可以工作但无法显示 – 数据必须是一维的

我试图使用 XGBoost 创建模型。 看起来我成功地…

ML Tuning – Cross Validation in Spark

我在https://spark.apache.org/…

如何在React JS中使用fetch从REST API获取预测

我正在开发一个应用程序,其中Flask REST AP…

如何分析ML.NET中多类分类预测得分数组?

我在ML.NET中创建了一个多类分类项目。该项目可以对…

发表回复

您的邮箱地址不会被公开。 必填项已用 * 标注