并行处理生成的句子出现混乱结果

我正在为一些神经网络学习目的创建数据集。之前,我使用for循环来连接和生成句子,但由于过程太慢,我改用了foreach来实现句子生成。过程很快,在50秒内完成。我只是使用模板进行槽填充,然后将它们拼接成句子,但输出却出现了混乱(单词拼写错误,单词之间出现未知空格,单词本身丢失等情况)。

library(foreach)library(doParallel)library(tictoc)tic("Data preparation - parallel mode")cl <- makeCluster(3)registerDoParallel(cl)f_sentences<-c();sentences<-c()hr=38:180;fl=1:5;month=1:5strt<-Sys.time()a<-foreach(hr=38:180,.packages = c('foreach','doParallel')) %dopar% {  foreach(fl=1:5,.packages = c('foreach','doParallel')) %dopar%{    foreach(month=1:5,.packages = c('foreach','doParallel')) %dopar% {      if(hr>=35 & hr<=44){        sentences<-paste("About",toString(hr),"soldiers died in the battle (count being severly_low).","Around",toString(fl),                         "soldiers and civilians went missing. We only have about",(sample(38:180,1)),"crates which lasts for",toString(month),"months as food supply")        f_sentences<-c(f_sentences,sentences);outfile<-unname(f_sentences)}      if(hr>=45 & hr<=59){        sentences<-paste("About",toString(hr),"soldiers died in the battle (count being low).","Around",toString(fl),                         "soldiers and civilians went missing. We only have about",(sample(38:180,1)),"crates which lasts for",toString(month),"months as food supply")        f_sentences<-c(f_sentences,sentences);outfile<-unname(f_sentences)}      if(hr>=60 & hr<=100){        sentences<-paste("About",toString(hr),"soldiers died in the battle (count being medium).","Around",toString(fl),                         "soldiers and civilians went missing. We only have about",(sample(38:180,1)),"crates which lasts for",toString(month),"months as food supply")        f_sentences<-c(f_sentences,sentences);outfile<-unname(f_sentences)}      if(hr>=101 & hr<=150){        sentences<-paste("About",toString(hr),"soldiers died in the battle (count being high).","Around",toString(fl),                         "soldiers and civilians went missing. We only have about",(sample(38:180,1)),"crates which lasts for",toString(month),"months as food supply")        f_sentences<-c(f_sentences,sentences);outfile<-unname(f_sentences)}      if(hr>=151 & hr<=180){        sentences<-paste("About",toString(hr),"soldiers died in the battle (count being severly_high).","Around",toString(fl),                         "soldiers and civilians went missing. We only have about",(sample(38:180,1)),"crates which lasts for",toString(month),"months as food supply")        f_sentences<-c(f_sentences,sentences);outfile<-unname(f_sentences)}      return(outfile)    }    write.table(outfile,file="/home/outfile.txt",append = T,row.names = F,col.names = F)    gc()  }}stopCluster(cl)toc()

生成文件的统计数据如下:

  • 行数:427,975
  • 分割方式:单词分割(” “)
  • 词汇量:567

    path<-"/home/outfile.txt"
    File<-(fread(path,sep = "\n",header = F))[[1]]
    corpus<-tolower(File) %>%
    #removePunctuation() %>%
    strsplit(splitting) %>%
    unlist()
    vocab<-unique(corpus)

    像这样的简单句子应该只有很少的词汇量,因为这里只有数字是变化的参数。通过检查词汇输出并使用grep命令,我发现句子中出现了很多混乱的单词(也有一些单词丢失),例如wenttcrpply等,这些通常不应该出现在我固定的模板中。

    预期句子
    “About 40 soldiers died in the battle (count being severly_low). Around 1 soldiers and civilians went missing. We only have about 146 crates which lasts for 1 months as food supply”

    grep -rnw ‘outfile.txt’ -e ‘wentt’
    24105:”About 62 soldiers died in the battle (count being medium). Around 2 soldiers and civilians wentt 117 crates which lasts for 1 months as food supply”

    grep -rnw ‘outfile.txt’ -e ‘crpply’
    76450:”About 73 soldiers died in the battle (count being medium). Around 1 soldiers and civilians went missing. We only have about 133 crpply”

    在生成的前几个句子中,生成是正确的,之后就出现了问题。导致这种情况的原因是什么?我只是执行了正常的粘贴和槽填充操作。任何帮助都将不胜感激!


回答:

代码现在运行正常,没有更多错误。我认为上次的错误可能是由于一次故障引起的。在其他机器上测试了不同版本的R,仍然没有问题。

Related Posts

使用LSTM在Python中预测未来值

这段代码可以预测指定股票的当前日期之前的值,但不能预测…

如何在gensim的word2vec模型中查找双词组的相似性

我有一个word2vec模型,假设我使用的是googl…

dask_xgboost.predict 可以工作但无法显示 – 数据必须是一维的

我试图使用 XGBoost 创建模型。 看起来我成功地…

ML Tuning – Cross Validation in Spark

我在https://spark.apache.org/…

如何在React JS中使用fetch从REST API获取预测

我正在开发一个应用程序,其中Flask REST AP…

如何分析ML.NET中多类分类预测得分数组?

我在ML.NET中创建了一个多类分类项目。该项目可以对…

发表回复

您的邮箱地址不会被公开。 必填项已用 * 标注