你好,我想在蘑菇数据集上使用一个简单的 AdaBoostClassifier,数据集看起来像这样:
target cap-shape cap-surface cap-color bruises odor \3059 0 2 3 2 1 5 1953 0 5 0 3 1 5 1246 0 2 2 3 0 5 5373 1 5 2 8 1 2 413 0 5 3 9 1 3
…
使用以下代码:
from sklearn.ensemble import AdaBoostClassifierfrom sklearn.preprocessing import LabelEncoderimport pandas as pddataset = pd.read_csv('data\mushroom.csv',header=None)dataset = dataset.sample(frac=1)dataset.columns = ['target','cap-shape','cap-surface','cap-color','bruises','odor','gill-attachment','gill-spacing', 'gill-size','gill-color','stalk-shape','stalk-root','stalk-surface-above-ring','stalk-surface-below-ring','stalk-color-above-ring', 'stalk-color-below-ring','veil-type','veil-color','ring-number','ring-type','spore-print-color','population', 'habitat']for label in dataset.columns: dataset[label] = LabelEncoder().fit(dataset[label]).transform(dataset[label])X = dataset.drop(['target'],axis=1)Y = dataset['target']AdaBoost = AdaBoostClassifier(base_estimator='DecisionTreeClassifier',n_estimators=400,learning_rate=0.01,algorithm='SAMME')AdaBoost.fit(X,Y)prediction = AdaBoost.score(Y)print(prediction)
但这返回给我的是:
—> 15 AdaBoost.fit(X,Y)
AttributeError: ‘str’ 对象没有属性 ‘fit’
回答:
我已经找到了问题所在。我将 base_estimator 设置为 ‘DecisionTreeClassifier’,这是一个字符串,因此没有 fit() 方法。而 AdaBoost 并不是一个字符串。
from sklearn.ensemble import AdaBoostClassifierfrom sklearn.preprocessing import LabelEncoderfor label in dataset.columns: dataset[label] = LabelEncoder().fit(dataset[label]).transform(dataset[label])X = dataset.drop(['target'],axis=1)Y = dataset['target']AdaBoost = AdaBoostClassifier(n_estimators=400,learning_rate=0.01,algorithm='SAMME')AdaBoost.fit(X,Y)prediction = AdaBoost.score(X,Y)print(prediction)
0.9182668636139832