我是TensorFlow的新手,正在尝试将我的一个scikit-learn模型转换为TensorFlow的表示方式,但发现这非常复杂。
在scikit-learn中,你只需调用model.dump("ModelName.pkl")
来保存模型,并调用joblib.load("ModelName.pkl")
来再次使用它。我试图在TensorFlow中做类似的事情,但遇到了以下错误:
Traceback (most recent call last): File "/Users/user0/Desktop/IPML_Model/tensorflow_model_train.py", line 39, in <module> saver = tf.train.Saver() File "/Library/Python/2.7/site-packages/tensorflow/python/training/saver.py", line 1139, in __init__ self.build() File "/Library/Python/2.7/site-packages/tensorflow/python/training/saver.py", line 1161, in build raise ValueError("No variables to save")ValueError: No variables to save
我只想用get_training_data()
训练模型,保存它,然后加载它以便我可以调用predict
。这是我目前的代码:
def get_training_data(): X, y = preprocess_data() X_train, _, y_train, _ = train_test_split(X, y, test_size=0.2, random_state=123) feature_set = {f: tf.constant(X_train[f]) for f in features} label_set = tf.constant(y_train) return feature_set, label_set# 启动会话sess = tf.Session()# 初始化DNNRegressor模型feature_cols = [real_valued_column(k) for k in features]dnn_regressor = DNNRegressor(feature_columns=feature_cols, hidden_units=[50, 50], label_dimension=7, model_dir=os.getcwd())# 训练模型dnn_regressor.fit(input_fn=lambda: get_training_data(), steps=5000)# 保存模型saver = tf.train.Saver()saver.save(sess, "dnnregressor.ckpt")
在拟合后,我可以在dnnregressor
上调用predict
,这不需要“变量”,但我想先保存模型,然后再调用predict。最简单、最基础的做法是什么?
回答:
当你调用以下代码时,模型已经保存到了model_dir
中:
dnn_regressor = DNNRegressor(feature_columns=feature_cols, hidden_units=[50, 50], label_dimension=7, model_dir=os.getcwd())
现在在inference
过程中,你再次调用上述代码,它会从model_dir
中加载模型,然后调用dnn_regressor.predict()
函数。