Keras + Tensorflow 奇怪的结果

使用Pimia印第安人糖尿病数据集,我构建了以下顺序模型:

import matplotlib.pyplot as pltimport numpyfrom keras import callbacksfrom keras import optimizersfrom keras.layers import Densefrom keras.models import Sequentialfrom keras.callbacks import ModelCheckpointfrom sklearn.preprocessing import StandardScaler#TensorBoard callback for visualization of training historytb = callbacks.TensorBoard(log_dir='./logs/latest', histogram_freq=10, batch_size=32,                           write_graph=True, write_grads=True, write_images=False,                           embeddings_freq=0, embeddings_layer_names=None, embeddings_metadata=None)# Early stopping - Stop training before overfittingearly_stop = callbacks.EarlyStopping(monitor='val_loss', min_delta=0, patience=3, verbose=1, mode='auto')# fix random seed for reproducibilityseed = 42numpy.random.seed(seed)# load pima indians datasetdataset = numpy.loadtxt("pima-indians-diabetes.csv", delimiter=",")# split into input (X) and output (Y) variablesX = dataset[:, 0:8]Y = dataset[:, 8]# Standardize features by removing the mean and scaling to unit variancescaler = StandardScaler()X = scaler.fit_transform(X)#ADAM Optimizer with learning rate decayopt = optimizers.Adam(lr=0.0001, beta_1=0.9, beta_2=0.999, epsilon=1e-08, decay=0.0001)## Create our modelmodel = Sequential()model.add(Dense(12, input_dim=8, kernel_initializer='uniform', activation='relu'))model.add(Dense(8, kernel_initializer='uniform', activation='relu'))model.add(Dense(1, kernel_initializer='uniform', activation='sigmoid'))# Compile the model using binary crossentropy since we are predicting 0/1model.compile(loss='binary_crossentropy',              optimizer=opt,              metrics=['accuracy'])# checkpointfilepath="./checkpoints/weights.best.hdf5"checkpoint = ModelCheckpoint(filepath, monitor='val_acc', verbose=1, save_best_only=True, mode='max')# Fit the modelhistory = model.fit(X, Y, validation_split=0.33, epochs=10000, batch_size=10, verbose=0, callbacks=[tb,early_stop,checkpoint])# list all data in historyprint(history.history.keys())# summarize history for accuracyplt.plot(history.history['acc'])plt.plot(history.history['val_acc'])plt.title('model accuracy')plt.ylabel('accuracy')plt.xlabel('epoch')plt.legend(['train', 'test'], loc='upper left')plt.show()# summarize history for lossplt.plot(history.history['loss'])plt.plot(history.history['val_loss'])plt.title('model loss')plt.ylabel('loss')plt.xlabel('epoch')plt.legend(['train', 'test'], loc='upper left')plt.show()

我添加了提前停止、检查点和Tensorboard回调,得到以下结果:

Epoch 00000: val_acc improved from -inf to 0.67323, saving model to ./checkpoints/weights.best.hdf5Epoch 00001: val_acc did not improve...Epoch 00024: val_acc improved from 0.67323 to 0.67323, saving model to ./checkpoints/weights.best.hdf5...Epoch 00036: val_acc improved from 0.76378 to 0.76378, saving model to ./checkpoints/weights.best.hdf5...Epoch 00044: val_acc improved from 0.79921 to 0.80709, saving model to ./checkpoints/weights.best.hdf5...Epoch 00050: val_acc improved from 0.80709 to 0.80709, saving model to ./checkpoints/weights.best.hdf5...Epoch 00053: val_acc improved from 0.80709 to 0.81102, saving model to ./checkpoints/weights.best.hdf5...Epoch 00257: val_acc improved from 0.81102 to 0.81102, saving model to ./checkpoints/weights.best.hdf5...Epoch 00297: val_acc improved from 0.81102 to 0.81496, saving model to ./checkpoints/weights.best.hdf5Epoch 00298: val_acc did not improveEpoch 00299: val_acc did not improveEpoch 00300: val_acc did not improveEpoch 00301: val_acc did not improveEpoch 00302: val_acc did not improveEpoch 00302: early stopping

根据日志,我的模型准确率是0.81496。奇怪的是,验证准确率高于训练准确率(0.81 vs 0.76),验证损失低于训练损失(0.41 vs 0.47)。

enter image description hereenter image description here

Q: 我遗漏了什么?我需要在代码中做哪些更改来解决这个问题?


回答:

如果你对数据进行洗牌,这个问题就解决了。

enter image description here

import matplotlib.pyplot as pltimport numpyfrom keras import callbacksfrom keras import optimizersfrom keras.layers import Densefrom keras.models import Sequentialfrom keras.callbacks import ModelCheckpointfrom sklearn.preprocessing import StandardScalerfrom sklearn.utils import shuffle# TensorBoard callback for visualization of training historytb = callbacks.TensorBoard(log_dir='./logs/4', histogram_freq=10, batch_size=32,                           write_graph=True, write_grads=True, write_images=False,                           embeddings_freq=0, embeddings_layer_names=None, embeddings_metadata=None)# Early stopping - Stop training before overfittingearly_stop = callbacks.EarlyStopping(monitor='val_loss', min_delta=0, patience=3, verbose=1, mode='auto')# fix random seed for reproducibilityseed = 42numpy.random.seed(seed)# load pima indians datasetdataset = numpy.loadtxt("../Downloads/pima-indians-diabetes.csv", delimiter=",")# split into input (X) and output (Y) variablesX = dataset[:, 0:8]Y = dataset[:, 8]# Standardize features by removing the mean and scaling to unit variancescaler = StandardScaler()X = scaler.fit_transform(X)# This is the important partX, Y = shuffle(X, Y)#ADAM Optimizer with learning rate decayopt = optimizers.Adam(lr=0.0001, beta_1=0.9, beta_2=0.999, epsilon=1e-08, decay=0.0001)## Create our modelmodel = Sequential()model.add(Dense(12, input_dim=8, kernel_initializer='uniform', activation='relu'))model.add(Dense(8, kernel_initializer='uniform', activation='relu'))model.add(Dense(1, kernel_initializer='uniform', activation='sigmoid'))# Compile the model using binary crossentropy since we are predicting 0/1model.compile(loss='binary_crossentropy',              optimizer=opt,              metrics=['accuracy'])# checkpoint# filepath="./checkpoints/weights.best.hdf5"# checkpoint = ModelCheckpoint(filepath, monitor='val_acc', verbose=1, save_best_only=True, mode='max')# Fit the modelhistory = model.fit(X, Y, validation_split=0.33, epochs=1000, batch_size=10, verbose=0, callbacks=[tb,early_stop])# list all data in historyprint(history.history.keys())# summarize history for accuracyplt.plot(history.history['acc'])plt.plot(history.history['val_acc'])plt.title('model accuracy')plt.ylabel('accuracy')plt.xlabel('epoch')plt.legend(['train', 'test'], loc='upper left')plt.show()# summarize history for lossplt.plot(history.history['loss'])plt.plot(history.history['val_loss'])plt.title('model loss')plt.ylabel('loss')plt.xlabel('epoch')plt.legend(['train', 'test'], loc='upper left')plt.show()

Related Posts

L1-L2正则化的不同系数

我想对网络的权重同时应用L1和L2正则化。然而,我找不…

使用scikit-learn的无监督方法将列表分类成不同组别,有没有办法?

我有一系列实例,每个实例都有一份列表,代表它所遵循的不…

f1_score metric in lightgbm

我想使用自定义指标f1_score来训练一个lgb模型…

通过相关系数矩阵进行特征选择

我在测试不同的算法时,如逻辑回归、高斯朴素贝叶斯、随机…

可以将机器学习库用于流式输入和输出吗?

已关闭。此问题需要更加聚焦。目前不接受回答。 想要改进…

在TensorFlow中,queue.dequeue_up_to()方法的用途是什么?

我对这个方法感到非常困惑,特别是当我发现这个令人费解的…

发表回复

您的邮箱地址不会被公开。 必填项已用 * 标注