损失函数返回NaN值的TensorFlow问题

我在这里编写了一个简单的TensorFlow程序,用于读取特征列表并尝试预测类别。

with tf.Session() as sess:        sess.run(tf.initialize_all_variables())        for epoch in range (hm_epochs):            epoch_loss = 0            itere = int(X_train.shape[0]/batch_size)            last = 0            add = 1            for start in range(itere):                x_train_epoch = X_train[last: ((start + add) * batch_size),:]                y_train_epoch = y_1Hot_train.eval()[last: ((start + add) * batch_size),:]#                 print("shape of x", x_train_epoch.shape, "shape of y", y_train_epoch.shape)                _, c = sess.run([optimizer, cost], feed_dict = {x: x_train_epoch, y: y_train_epoch})                epoch_loss += c                last = start * batch_size                add = 0            print('Epoch', epoch, 'completed out of', hm_epochs, 'loss', epoch_loss )        correct = tf.equal(tf.argmax(prediction, 1), tf.argmax(y, 1))        accuracy = tf.reduce_mean(tf.cast(correct, 'float'))        print('Accuracy:', accuracy.eval( {x: X_test, y: y_1Hot_test.eval() }))

链接: https://gist.github.com/makark/79af6ca53ca27d51abb1d87c9b9bac07

数据文件: https://gist.github.com/makark/eb859f50237edb9343f3ca32aeb3be2b

然而,当我运行代码时,损失值一直返回“nan”。我不确定发生了什么…任何帮助将不胜感激!

WARNING:tensorflow:From <ipython-input-149-0164f4af7d52>:46: initialize_all_variables (from tensorflow.python.ops.variables) is deprecated and will be removed after 2017-03-02.Instructions for updating:Use `tf.global_variables_initializer` instead.Epoch 0 completed out of 10 loss nanEpoch 1 completed out of 10 loss nanEpoch 2 completed out of 10 loss nanEpoch 3 completed out of 10 loss nanEpoch 4 completed out of 10 loss nanEpoch 5 completed out of 10 loss nanEpoch 6 completed out of 10 loss nanEpoch 7 completed out of 10 loss nanEpoch 8 completed out of 10 loss nanEpoch 9 completed out of 10 loss nanAccuracy: 0.589097

回答:

  • 输入数据中包含NaN值,可以通过X[np.isnan(X)] = 0来修复。
  • 输入数据未进行缩放,可以使用sklearn的StandardScaler来标准化你的输入数据。

  • 将权重设置为较小的初始值,使用random_normal中的stddev参数。

  • 修复输出计算中的错误:output = tf.add(tf.matmul(l3, output_layer['weights']),output_layer['biases'] )

Related Posts

使用LSTM在Python中预测未来值

这段代码可以预测指定股票的当前日期之前的值,但不能预测…

如何在gensim的word2vec模型中查找双词组的相似性

我有一个word2vec模型,假设我使用的是googl…

dask_xgboost.predict 可以工作但无法显示 – 数据必须是一维的

我试图使用 XGBoost 创建模型。 看起来我成功地…

ML Tuning – Cross Validation in Spark

我在https://spark.apache.org/…

如何在React JS中使用fetch从REST API获取预测

我正在开发一个应用程序,其中Flask REST AP…

如何分析ML.NET中多类分类预测得分数组?

我在ML.NET中创建了一个多类分类项目。该项目可以对…

发表回复

您的邮箱地址不会被公开。 必填项已用 * 标注