未初始化变量在TensorFlow中

我正在尝试编写一个机器学习程序。最初的想法是训练一个模型(在 q_model 中定义),该模型可以使用RMSProp进行训练。我在这里报告了一个非常简化的代码版本,但它无法正常工作。

错误信息如下:

Traceback (most recent call last):  File "/home/samuele/Projects/GBFQI/test/tf_test.py", line 45, in <module>    print sess.run({'train':train}, feed_dict={'x:0':x[indx],'a:0':a[indx],'y:0':y[indx]})  File "/usr/local/lib/python2.7/dist-packages/tensorflow/python/client/session.py", line 789, in run    run_metadata_ptr)  File "/usr/local/lib/python2.7/dist-packages/tensorflow/python/client/session.py", line 997, in _run    feed_dict_string, options, run_metadata)  File "/usr/local/lib/python2.7/dist-packages/tensorflow/python/client/session.py", line 1132, in _do_run    target_list, options, run_metadata)  File "/usr/local/lib/python2.7/dist-packages/tensorflow/python/client/session.py", line 1152, in _do_call    raise type(e)(node_def, op, message)tensorflow.python.framework.errors_impl.FailedPreconditionError: Attempting to use uninitialized value b/RMSProp     [[Node: RMSProp/update_b/ApplyRMSProp = ApplyRMSProp[T=DT_DOUBLE, _class=["loc:@b"], use_locking=false, _device="/job:localhost/replica:0/task:0/cpu:0"](b, b/RMSProp, b/RMSProp_1, RMSProp/update_b/Cast, RMSProp/update_b/Cast_1, RMSProp/update_b/Cast_2, RMSProp/update_b/Cast_3, gradients/add_grad/tuple/control_dependency_1)]]Caused by op u'RMSProp/update_b/ApplyRMSProp', defined at:  File "/home/samuele/Projects/GBFQI/test/tf_test.py", line 38, in <module>    train = optimizer.minimize(error)  File "/usr/local/lib/python2.7/dist-packages/tensorflow/python/training/optimizer.py", line 325, in minimize    name=name)  File "/usr/local/lib/python2.7/dist-packages/tensorflow/python/training/optimizer.py", line 456, in apply_gradients    update_ops.append(processor.update_op(self, grad))  File "/usr/local/lib/python2.7/dist-packages/tensorflow/python/training/optimizer.py", line 97, in update_op    return optimizer._apply_dense(g, self._v)  # pylint: disable=protected-access  File "/usr/local/lib/python2.7/dist-packages/tensorflow/python/training/rmsprop.py", line 140, in _apply_dense    use_locking=self._use_locking).op  File "/usr/local/lib/python2.7/dist-packages/tensorflow/python/training/gen_training_ops.py", line 449, in apply_rms_prop    use_locking=use_locking, name=name)  File "/usr/local/lib/python2.7/dist-packages/tensorflow/python/framework/op_def_library.py", line 767, in apply_op    op_def=op_def)  File "/usr/local/lib/python2.7/dist-packages/tensorflow/python/framework/ops.py", line 2506, in create_op    original_op=self._default_original_op, op_def=op_def)  File "/usr/local/lib/python2.7/dist-packages/tensorflow/python/framework/ops.py", line 1269, in __init__    self._traceback = _extract_stack()FailedPreconditionError (see above for traceback): Attempting to use uninitialized value b/RMSProp     [[Node: RMSProp/update_b/ApplyRMSProp = ApplyRMSProp[T=DT_DOUBLE, _class=["loc:@b"], use_locking=false, _device="/job:localhost/replica:0/task:0/cpu:0"](b, b/RMSProp, b/RMSProp_1, RMSProp/update_b/Cast, RMSProp/update_b/Cast_1, RMSProp/update_b/Cast_2, RMSProp/update_b/Cast_3, gradients/add_grad/tuple/control_dependency_1)]]

我无法解释这个错误,因为模型已经初始化了,实际上如果我运行

print sess.run(q_model(x,a))

模型按预期工作,没有引发任何错误。

编辑:

我的问题与这个问题不同。我已经知道

init = tf.initialize_all_variables()sess = tf.Session()sess.run(init)

但我不知道在优化后也应该执行这些操作。


回答:

Related Posts

使用LSTM在Python中预测未来值

这段代码可以预测指定股票的当前日期之前的值,但不能预测…

如何在gensim的word2vec模型中查找双词组的相似性

我有一个word2vec模型,假设我使用的是googl…

dask_xgboost.predict 可以工作但无法显示 – 数据必须是一维的

我试图使用 XGBoost 创建模型。 看起来我成功地…

ML Tuning – Cross Validation in Spark

我在https://spark.apache.org/…

如何在React JS中使用fetch从REST API获取预测

我正在开发一个应用程序,其中Flask REST AP…

如何分析ML.NET中多类分类预测得分数组?

我在ML.NET中创建了一个多类分类项目。该项目可以对…

发表回复

您的邮箱地址不会被公开。 必填项已用 * 标注