Tensorflow 重塑问题,ValueError: 无法为形状为(1, 2)的值馈送到形状为'(?, 1, 2)’的Tensor u’Placeholder:0′

我收到了这个错误消息:ValueError: 无法为形状为(1, 2)的值馈送到形状为'(?, 1, 2)’的Tensor u’Placeholder:0′

我的训练和测试数据有2个特征

[[10, 10],[1,2],[3,2]...]

我的目标数据如下所示:

[[0, 1], [1, 0], [1, 0]...]

这是我的代码:

training_data = np.vstack(training_data)training_target = np.vstack(training_target)test_data = np.vstack(test_data)test_target = np.vstack(test_target)learning_rate = 0.001n_input = 2  n_steps = 1  n_hidden = 128  n_classes = 2  # tf Graph inputx = tf.placeholder("float", [None, n_steps, n_input])y = tf.placeholder("float", [None, n_classes])# Define weightsweights = {    'out': tf.Variable(tf.random_normal([n_hidden, n_classes]))}biases = {    'out': tf.Variable(tf.random_normal([n_classes]))}def RNN(x, weights, biases):    x = tf.unstack(x, n_steps, 1)    # Define a lstm cell with tensorflow    lstm_cell = rnn.BasicLSTMCell(n_hidden, forget_bias=1.0)    # Get lstm cell output    outputs, states = rnn.static_rnn(lstm_cell, x, dtype=tf.float32)    # Linear activation, using rnn inner loop last output    return tf.matmul(outputs[-1], weights['out']) + biases['out']pred = RNN(x, weights, biases)# Define loss and optimizercost = tf.reduce_mean(tf.nn.softmax_cross_entropy_with_logits(logits=pred, labels=y))optimizer = tf.train.AdamOptimizer(learning_rate=learning_rate).minimize(cost)# Evaluate modelcorrect_pred = tf.equal(tf.argmax(pred, 1), tf.argmax(y, 1))accuracy = tf.reduce_mean(tf.cast(correct_pred, tf.float32))# Initializing the variablesinit = tf.global_variables_initializer()# Launch the graphwith tf.Session() as sess:    sess.run(init)    step = 1    for i in range(len(training_data)):        batch_x = training_data[i]        batch_y = training_target[i]        print(batch_x)        print(batch_y)        batch_x = tf.reshape(batch_x, [1, 2]).eval()        print(batch_x)        sess.run(optimizer, feed_dict={x: batch_x, y: batch_y})        acc = sess.run(accuracy, feed_dict={x: batch_x, y: batch_y})        loss = sess.run(cost, feed_dict={x: batch_x, y: batch_y})        print("Iter " + str(step) + ", Minibatch Loss= " + "{:.6f}".format(loss) + ", Training Accuracy= " + "{:.5f}".format(acc))    print("Optimization Finished!")    print("Testing Accuracy:", sess.run(accuracy, feed_dict={x: test_data, y: test_target}))

我需要帮助来重塑数据,我还没有实现下一个批次的函数,只是想让这个工作起来。

没有包括我加载CSV文件的部分,…等等。

任何关于代码的评论都很好,谢谢你。


回答:

你试图馈送的数组不符合占位符的维度。例如,对于batch_x,你试图将[1, 2]馈送到[?, 1, 2],对于batch_y,你试图将[2]馈送到[?, 2]。如果你批次大小为1,你应该将[1, 1, 2]馈送到[?, 1, 2],将[1, 2]馈送到[?, 2]分别对应batch_x和batch_y。

batch_size = 1with tf.Session() as sess:    sess.run(init)    step = 1    for i in range(len(training_data)):        batch_x = training_data[i]        batch_y = training_target[i]        batch_x = np.reshape(batch_x, [batch_size, 1, 2])        batch_y = np.reshape(batch_y, [batch_size, 2])        [_, acc, loss] = sess.run([optimizer, accuracy, cost], feed_dict={x: batch_x, y: batch_y})        print("Iter " + str(step) + ", Minibatch Loss= " + "{:.6f}".format(loss) + ", Training Accuracy= " + "{:.5f}".format(acc))

Related Posts

使用LSTM在Python中预测未来值

这段代码可以预测指定股票的当前日期之前的值,但不能预测…

如何在gensim的word2vec模型中查找双词组的相似性

我有一个word2vec模型,假设我使用的是googl…

dask_xgboost.predict 可以工作但无法显示 – 数据必须是一维的

我试图使用 XGBoost 创建模型。 看起来我成功地…

ML Tuning – Cross Validation in Spark

我在https://spark.apache.org/…

如何在React JS中使用fetch从REST API获取预测

我正在开发一个应用程序,其中Flask REST AP…

如何分析ML.NET中多类分类预测得分数组?

我在ML.NET中创建了一个多类分类项目。该项目可以对…

发表回复

您的邮箱地址不会被公开。 必填项已用 * 标注